C- PILE A COMBUSTIBLE ET CONVERSION DC-DC

La Pile à Combustible (PAC) est raccordée au bus continu 400V à travers un convertisseur DC-DC isolé (Figure 8).

Cette PAC peut être considérée, en régime permanent, comme une source de tension dont la valeur dépend du courant qu'elle débite. Cette PAC est composée de 2 stacks en série, chaque stack étant constitué de 80 cellules en série de 250 cm² chacune, soit au total 160 cellules en série. La caractéristique d'une cellule est donnée Figure 7.

L'alimentation en hydrogène s'effectue grâce à une bouteille B50, stockant 50 litres sous 240 bars. Cette bouteille représente un volume d'hydrogène de 8,5 m³ à pression atmosphérique.

L'énergie volumique de l'hydrogène à pression atmosphérique est de 12,7 MJ/m³.

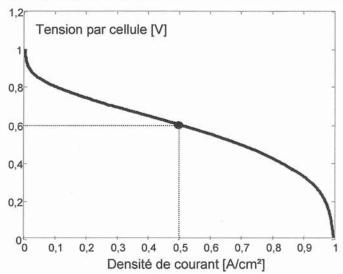


Figure 7 : Caractéristique d'une cellule

Le convertisseur DC-DC est représenté Figure 8 ci-dessous. Il s'agit d'un double-boost. L'inductance L d'entrée est répartie sur chaque branche.

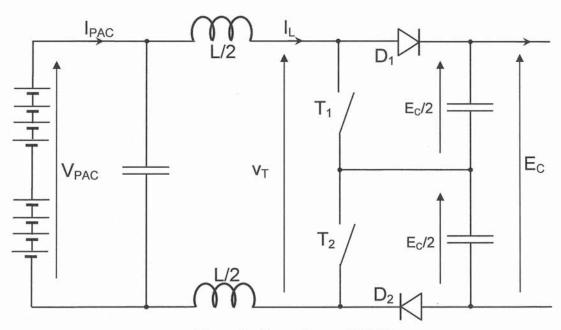


Figure 8: Convertisseur DC-DC

C-1 Fonctionnement de la Pile à Combustible

La pile est de type PEMFC (Proton Exchange Membrane Fuel Cell) alimentée en hydrogène et par l'oxygène de l'air. La puissance nominale est définie à 0,5 A/cm². Le rendement de la PAC (puissance électrique/puissance hydrogène) est estimé à 40% à sa puissance nominale.

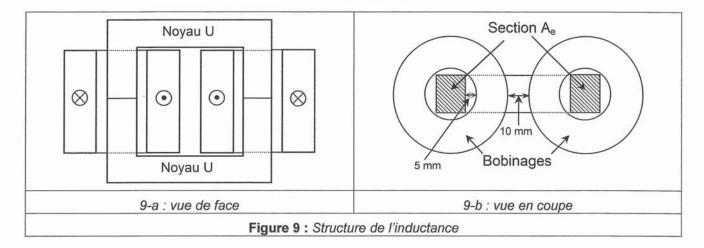
- Q49. Quelles réactions chimiques fait intervenir la PAC à l'anode et à la cathode lors de la production d'électricité? Indiquer ces réactions sur la figure 3 du document réponse DR3 en indiquant le sens du courant produit.
- Q50. Quels sont les produits de la réaction autres que l'énergie électrique ?
- Q51. Déterminer, à l'aide de la Figure 7, la tension V_{PAC} à vide (V_{PAC-0}) puis en charge (V_{PAC-n}) à 0,5 A/cm². En déduire la valeur du courant disponible en charge et la puissance nominale correspondante.
- Q52. A puissance nominale, déterminer l'autonomie avec une bouteille d'hydrogène B50.

C-2 Fonctionnement du convertisseur DC-DC

Le convertisseur est représenté Figure 8. On fera l'hypothèse que la tension de sortie E_{C} se répartit pour moitié sur chaque condensateur du point milieu. Cette tension de sortie E_{C} est continue, correctement filtrée.

Les transistors sont commandés pendant $\delta.T_D$ de la période T_D , la commande de T_2 étant retardée de $T_D/2$ par rapport à celle de T_1 (voir document réponse DR3).

$$F_D = 1/T_D = 16 \text{ kHz}$$


- Q53. Représenter sur la figure 4 du document réponse DR3 la tension $v_T(t)$ et l'allure du courant d'entrée $i_{PAC}(t)$ en conduction continue pour les deux cas possibles de fonctionnement ($\delta < 0,5$ et $\delta > 0,5$).
- Q54. Exprimer la tension de sortie E_C en fonction de V_{PAC} , et δ . On pourra pour cela s'aider de la représentation de la tension $v_T(t)$. Que peut-on conclure sur ce résultat en fonction des deux cas de fonctionnement ?
- Q55. Calculer le rapport cyclique δ nécessaire pour obtenir E_C = 400V au point de puissance nominale.
- Q56. Exprimer l'ondulation Δi_L du courant d'entrée en fonction de V_{PAC} , L et F_D pour $\delta > 0,5$.
- Q57. Déterminer la valeur de L nécessaire pour limiter cette ondulation à 25% du courant d'entrée pour le point nominal. Quelle est la fréquence de cette ondulation ?
- Q58. Calculer la contrainte maximale en tension aux bornes d'un transistor. Quelle technologie de semi-conducteur préconiseriez-vous pour cette application ?

C-3 Dimensionnement de l'inductance

L'inductance est réalisée par assemblage de deux noyaux de type U formant un circuit magnétique représenté Figure 9. La documentation de ces noyaux est reportée dans l'annexe 2.

Le bobinage est formé de deux enroulements placés sur chaque jambe latérale et qui seront en série conformément à la Figure 8. Ces enroulements sont constitués de feuillards de cuivre d'épaisseur 0,5 mm et de hauteur 50 mm, soit une section effective de cuivre notée S_{cu} de 25 mm².

On appellera B l'induction au sein du circuit, considérée constante à travers la section A_e du noyau et N le nombre total de spires (N/2 par enroulement).

On s'imposera comme grandeurs de dimensionnement :

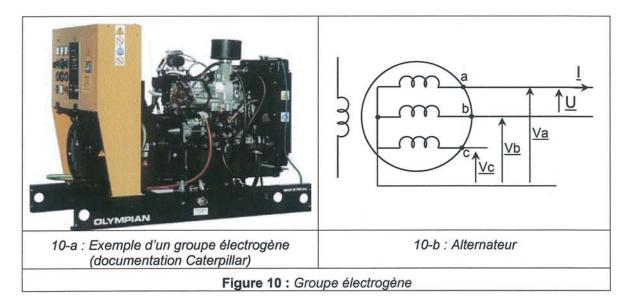
- L = 50 µH
- $< I_1 > = 125 A$
- $\Delta i_1 = 30 A$
- $-\hat{B} = 0.6 T$
- J = 5 A/mm² pour la densité de courant dans le bobinage
- $k_b = \frac{S_b}{N.S_{cu}} = 2$, S_b étant la section disponible de fenêtre de bobinage
- Q59. Exprimer la valeur efficace I_L du courant i_L en fonction de $<I_L>$ et Δi_L . Montrer à l'aide de l'application numérique que cette valeur diffère peu de sa valeur moyenne.
- Q60. Exprimer la section A_e du noyau en fonction de L, \hat{I}_L , \hat{B} et N.
- Q61. Exprimer le produit ($S_b.A_e$) en fonction de L, \hat{l}_L , l_L , \hat{B} , k_b et J. Faire l'application numérique.
- Q62. A partir de la documentation de l'annexe 2, proposer un choix associant deux noyaux U et garantissant la réalisation de cette inductance selon l'organisation de la Figure 9.
- Q63. Déterminer le nombre de spires nécessaire. On retiendra le nombre entier pair supérieur à la valeur théorique trouvée.
- Q64. Vérifier que le noyau choisi convient en déterminant l'occupation de la fenêtre de bobinage, avec les contraintes d'encombrement de la Figure 9-b. On considérera pour cela que chaque spire occupe une largeur de 0,6 mm.
- Q65. Déterminer la perméabilité relative du matériau qui garantira la valeur désirée de l'inductance, sachant que l'entrefer entre les deux parties U du circuit magnétique est négligeable.
- Q66. Dans le cas d'une perméabilité relative réelle supérieure à celle trouvée précédemment, quelle solution peut-on mettre en œuvre pour répondre au cahier des charges ?

D- GROUPE ELECTROGENE

Le groupe électrogène est composé d'un moteur thermique à gaz entraînant un alternateur triphasé. Ce dernier sera employé en monophasé selon le schéma de la Figure 10.

Principales caractéristiques :

Moteur thermique: 4 cylindres, 1,8 litres.


- Puissance utile nominale de 11,8 kW à1500 tr/min
- Consommation à la puissance nominale : 5,1 m³/h de gaz naturel
- Pouvoir calorifique du gaz : 9,5 kWh/m³

Alternateur: triphasé, à pôles lisses, rotor bobiné, 1500 tr/min, 50 Hz

- Puissance nominale : 31 kVA en triphasé équilibré
- Courant nominal: 55 A
- Rendement à la puissance utile du moteur thermique : 87,2%
- Réactance synchrone par phase : $X = 1,3 \Omega$
- Isolation classe H

Hypothèses, sauf mentions contraires :

- l'alternateur est supposé à entrefer constant et ne présente pas de fuites magnétiques,
- la saturation, l'hystérésis et les courants de Foucault des matériaux magnétiques seront négligés,
- les résistances des enroulements statoriques seront négligées devant les impédances cycliques.

D-1 Fonctionnement général

Le groupe électrogène doit pouvoir se substituer à l'alimentation sans interruption et au réseau normalement présent. Il doit donc créer un réseau monophasé $U=230\ V-12\ kVA$ pour une puissance active de sortie limitée à 10 kW.

- Q67. Montrer que l'alternateur choisi convient. Justifier son surdimensionnement.
- Q68. Déterminer le nombre de pôles de l'alternateur.
- Q69. En fonctionnement triphasé équilibré, l'alternateur est représenté par le modèle de Behn-Eschenburg : ce modèle est-il adapté ? Que représente la réactance synchrone X ?
- Q70. Indiquer succinctement les moyens d'actions pour, d'une part, asservir la fréquence de sortie à 50 Hz et, d'autre part, asservir la tension de sortie à 230 V.
- Q71. Déterminer le rendement du moteur thermique pour un fonctionnement à puissance nominale de celui-ci.
- Q72. Préciser à quoi correspond l'isolation classe H de cet alternateur.

D-2 Fonctionnement en monophasé

L'alternateur fonctionnant en régime déséquilibré, il sera fait appel aux composantes symétriques et à l'opérateur $a=e^{j\frac{2\pi}{3}}$. Les hypothèses d'étude seront :

- la tension par phase à vide produite par l'alternateur ne comporte que sa composante directe
 Ed = E.
- la réactance synchrone se décompose selon les trois modes :
 - composante directe : Xd = X = 1,3 Ω
 - composante inverse : Xi = 10%.Xd
 - composante homopolaire : Xh
- Q73. Exprimer les relations permettant de passer des courants de phases $[\underline{Ia}, \underline{Ib}, \underline{Ic}]$ aux composantes [Id, Ii, Ih].
- Q74. À partir du schéma équivalent par phase, exprimer $[\underline{Vd}, \underline{Vi}, \underline{Vh}]$ en fonction de $[\underline{Id}, \underline{Ii}, \underline{Ih}]$, $[\underline{Xd}, \underline{Xi}, \underline{Xh}]$ et de E (rappel : résistances négligées).
- Q75. Compte tenu du débit monophasé (courant \underline{I} , schéma de la figure 10-b), déterminer $[\underline{Vd}, \underline{Vi}, \underline{Vh}]$ puis \underline{Va} et \underline{Vb} en fonction de \underline{I} , E, Xd et Xi.
- Q76. Exprimer la tension de sortie <u>U</u> et montrer que ce débit monophasé peut se modéliser par le schéma équivalent de la Figure 11 ci-dessous.

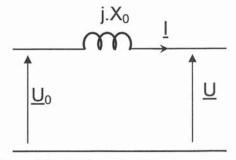
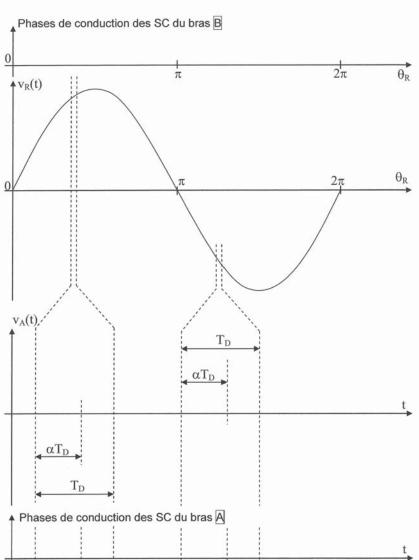


Figure 11 : Schéma équivalent monophasé

Q77. Exprimer la valeur efficace U_0 en fonction de E et la réactance X_0 en fonction de $[\underline{Xd},\underline{Xi},\underline{Xh}]$. Justifier simplement pourquoi X_0 ne dépend pas de Xh.

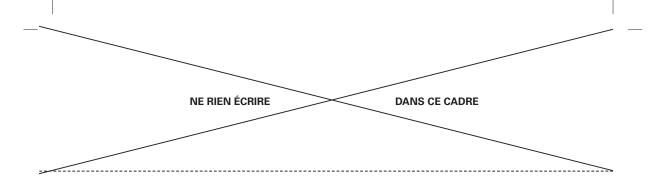
D-3 Fonctionnement en charge

- Q78. L'alternateur fonctionnant au point nominal défini au début du paragraphe D-1, déterminer le courant débité et le facteur de puissance.
- Q79. Pour le point nominal, déterminer les valeurs extrêmes de U_0 pour les deux valeurs du déphasage (avance ou retard) correspondant au facteur de puissance trouvé à la question Q78. En déduire la plage de variation de E.
- Q80. Comparer la valeur maximale de E avec celle que l'on obtiendrait en fonctionnement nominal triphasé, l'alternateur produisant un réseau 230V entre phases, I = 55 A, $\cos \varphi = 0.8$.

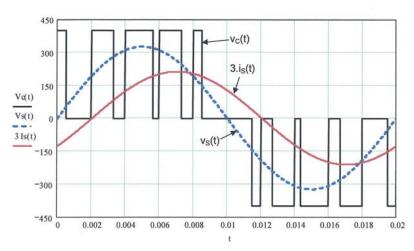

Fin du problème

MINISTÈRE DE L'ÉDUCATION NATIONALE

Académie :	Session:		
Concours:			
Spécialité/option :		Repère de l'é _l	oreuve :
Intitulé de l'épreuve :			
NOM:			
(en majuscules, suivi s'il y a lieu, du nom d'épouse) Prénoms :		— N° du candidat	
			(la numára act solui qui figura cur


EAE GEE 3

Document réponse DR1


Page C-1 sur 4

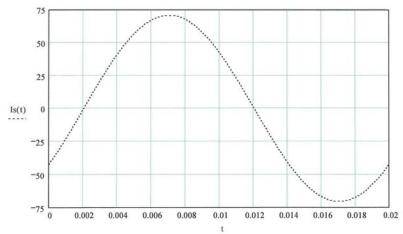

Document réponse DR2

Figure 1 : Formes d'ondes

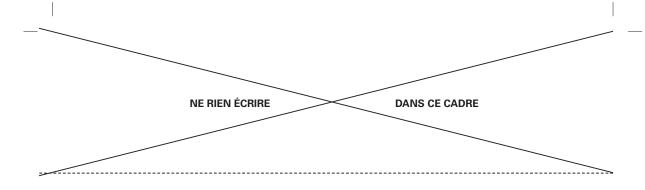
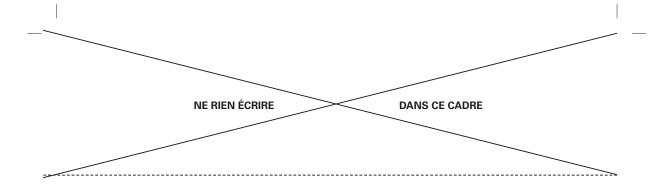

♦ Phases de conduction de T_{C2}

Figure 2:

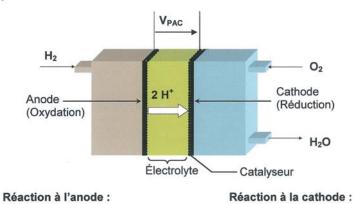
↑ Phases de conduction des semi-conducteurs du bras B

Page C-2 sur 4


Tableau réponse 1 (question Q36)

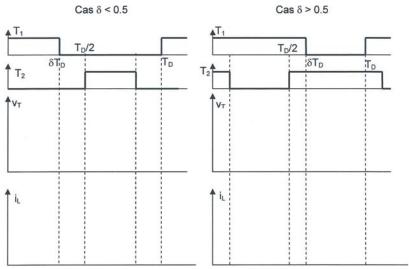
	Bras B		Bras C		
	IGBT	Diode	IGBT	Diode	
Courant moyen					
Courant efficace			27,5 A	22,2 A	
Tenue en tension					

Tableau réponse 2 (question Q41)


	Bra	s B	Bras C		
	IGBT	Diode	IGBT	Diode	
	(Indiquer les perte	s par composa	ant)	
Pertes par conduction					
Pertes par commutation					
Pertes totales			P _T =	Po =	

Page C-3 sur 4

Document réponse DR3


Figure 3:

 $H_2 \rightarrow$

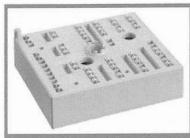

→ H₂O

Figure 4:

Annexe 1

SKiiP 27AC065V1

MiniSKiiP[®] 2

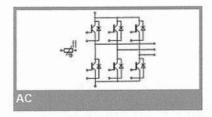
3-phase bridge inverter

SKIIP 27AC065V1

Features

- Ultrafast NPT IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

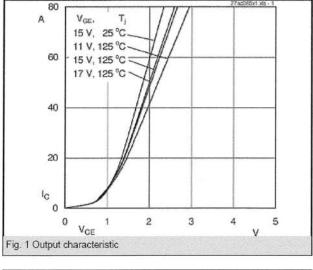
Typical Applications

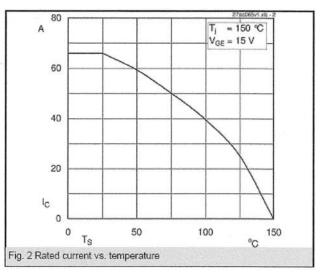

- Inverter up to 18 kVA
- Typical motor power 7,5 kW

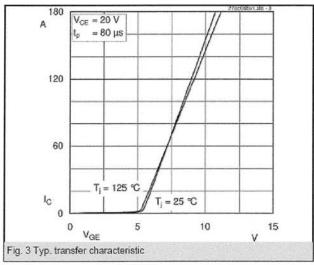
Remarks

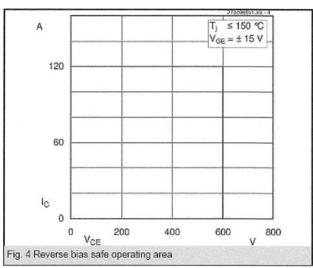
• V_{CEsat}, V_F= chip level value

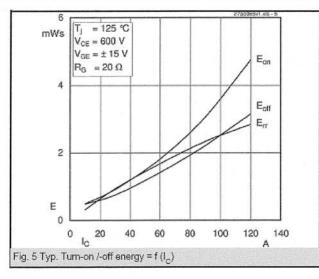
Absolute	Maximum Ratings	T _s = 25 °C, unless otherwi	se specified
Symbol	Conditions	Values	Units
IGBT - In	verter		
V _{CES}	1	600	l v
lc	T _s = 25 (70) °C	66 (50)	A
CRM	t _n ≤ 1 ms	120	A
V _{GES}	"	± 20	V
T _i		- 40 ÷ 150	°C
Diode - In	nverter		
l _E	T _e = 25 (70) °C	66 (50)	A
FRM	t _p ≤ 1 ms	120	A
T _i		- 40 + 150	°C
I _{tRMS}	per power terminal (20 A / spring)	100	A
T _{stg}	$T_{cp} \le T_{stq}$	- 40 + 125	°C
V _{isol}	AC, 1 min.	2500	V

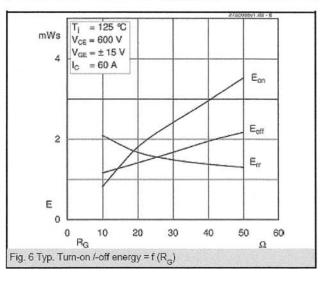

Characte	eristics	$T_s = 25 ^{\circ}\text{C}$, unless ot	herwise sp	pecified
Symbol	Conditions	min.	typ.	max.	Units
IGBT - In	verter				6
V _{CEsat} V _{GE(th)} V _{CE(TO)} r _T C _{les} C _{oes} C _{res}	$I_{Cnom} = 60 \text{ A}, T_j = 25 (126) ^{\circ}\text{C}$ $V_{OE} = V_{CE}, I_C = 1 \text{ mA}$ $T_j = 25 (125) ^{\circ}\text{C}$ $T_j = 25 (125) ^{\circ}\text{C}$ $V_{CE} = 25 \text{ V}, V_{OE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{OE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{OE} = 0 \text{ V}, f = 1 \text{ MHz}$ $V_{CE} = 25 \text{ V}, V_{OE} = 0 \text{ V}, f = 1 \text{ MHz}$	3	2 (2,2) 4 1,2 (1,1) 13 (18) 3,3 0,7 0,8	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	V V MΩ nF nF
R _{th(j-s)}	per IGBT		0,65		K/W
t _{d(on)} t _r t _{d(off)} t ₄ E _{on} E _{off}	under following conditions $V_{CC} = 300 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$ $I_{Cnom} = 60 \text{ A}$, $T_j = 125 ^{\circ}\text{C}$ $R_{Gon} = R_{Goff} = 20 \Omega$ inductive load		35 35 310 20 1,8 1,4		ns ns ns ns mJ mJ
Diode - I	nverter				
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{ih(i-s)}$	I _{Fnom} = 60 A, T _j = 25 (125) °C T _j = 25 (125) °C T _j = 25 (125) °C per diode		1,5 (1,5) 1 (0,9) 9 (10) 1	1,1 (1)	V V mΩ K/W
I _{RRM} Q _{rr} E _{rr}	under following conditions $I_{Fnom} = 60 \text{ A, } V_R = 300 \text{ V}$ $V_{GE} = 0 \text{ V, } T_j = 125 \text{ °C}$ $di_F/dt = 2200 \text{ A/µs}$		80 7,5 1,7		Α μC mJ
Tempera	ture Sensor				
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω
Mechani	cal Data	100			
m M _s	Mounting torque	2	65	2,5	g Nm

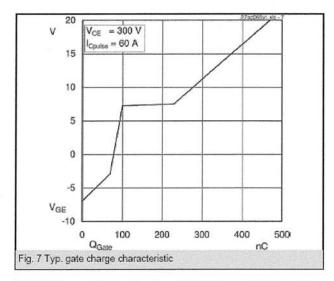



24-08-2006 SEN

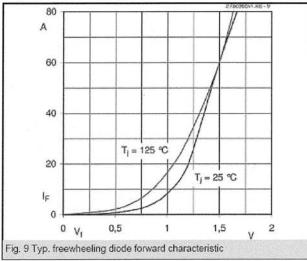

© by SEMIKRON


SKiiP 27AC065V1

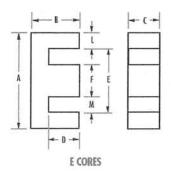


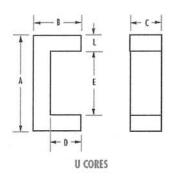


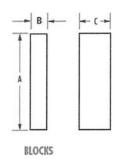


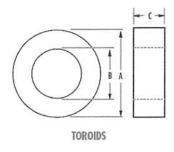


SKiiP 27AC065V1






Annexe 2


Noyaux magnétiques

MAGNETICS - WWW.MAG-INC.COM

^{*}Dependent on design configurations. Contact Magnetics Application Engineering for assistance.

DIMENSIONS (mm)

E CORES	TYPE	A	В	(D	E	F	L	M
	E5528 DIN 55/21	54.9	27.6	20.6	18.5	37.5	16.8	8.4	10.3
	E5530 DIN 55/25	54.9	27.6	24.6	18.5	37.5	16.8	8.4	10.3
	E6527 Metric E65	65.1	32.5	27.0	22.2	44.2	19.7	10.0	12.1
	E7228 F11	72.4	27.9	19.1	17.8	52.6	19.1	9.5	16.9
	E8020 Metric E80	80.0	38.1	19.8	28.1	59.3	19.8	9.9	19.8
	LE130	130.0	32.5	54.0	22.2	108.4	20.0	10.0	44.2
	LE145	145.0	27.9	38.2	17.8	124.2	19.0	9.5	52.6
	LE160	160.0	38.1	39.6	28.1	138.4	19.8	9.9	59.3
U CORES	TYPE	A	В	C	D	E		L	
	U5527	54.9	27.6	16.3	17.0	33.9		10.5	
	U5529	54.9	27.6	23.2	17.0	33.9		10.5	
	U6527	65.1	32.5	27.0	22.2	44.2		10.0	
	U6533	65.1	32.5	20.0	20.0	40.1		12.5	
	U7228	72.4	27.9	19.1	17.8	52.6		9.5	
	U7236	72.4	35.6	20.9	21.7	44.6		13.9	
	U8020	80.0	38.1	19.8	28.1	59.3		9.9	
	U8038	80.0	38.1	23.0	22.7	49.3		15.4	
BLOCKS	TYPE	A	В	C					
	B4741	47.5	41.0	27.5	1				
	B5528	54.9	27.6	20.6					
	B6030	60.0	30.0	15.0					
TOROIDS	TYPE	A	В	C					NAME OF TAXABLE PARTY.
	77111	58.0	34.7	14.9					
	77191	58.0	25.6	16.1					
	77908	78.9	48.2	17.0	and the same				

MAGNETIC DATA

TABLE 2		A _L nH/TURN ² (±8%)					
E CORES	TYPE	26µ	A _e (mm ²)	le (mm)	V _e (mm ³)	WA (mm2)	PART NUMBER
	E5528	116	350	123	43,100	381	00K5528E026
	£5530	138	417	123	51,400	381	00K5530E026
	E6527	162	540	147	79,400	537	00K6527E026
	E7228	130	368	137	50,300	602	00K7228E026
	E8020	103	389	185	72,100	1,110	00K8020E026
	LE130	254	1080	219	237,000	1,960	00K130LE026
	LE145	190	736	210	155,000	1,870	00K145LE026
	LE160	180	778	273	212,000	3,330	00K160LE026
U CORES	TYPE	26µ	Ae (mm²)	le (mm)	Ve (mm3)	WA (mm ²)	PART NUMBER
	U5527	67	172	168	28,896	921	00K5527U026
	U5529	85	244	168	40,992	921	00K5529U026
	U6527	89	270	219	59,100	1,630	00K6527U026
	U6533	82	250	199	49,750	1,284	00K6533U026
	U7228	74	184	210	38,600	1,540	00K7228U026
	U7236	87	290	219	63,510	1,545	00K7236U026
	U8020	64	195	273	53,200	2,740	00K8020U026
	U8038	97	354	237	83,898	1,793	00K8038U026
BLOCKS	TYPE	26μ	Ae (mm²)	le (mm)	Ve (mm3)	WA (mm ²)	PART NUMBER
	B4741	N/A		*	53,600	Ĥ	00K4741B026
	B5528	N/A	*	*	31,200	*	00K5528B026
	B6030	N/A		*	27,000	*	00K6030B026
TOROIDS	TYPE	26µ	Ae (mm²)	le (mm)	Ve (mm3)	WA (mm ²)	PART NUMBER
	77111	33	144	143	20,600	948	0077111A7
	77191	60	229	125	28,600	514	0077191A7
	77908	37	227	200	45,300	1,800	0077908A7