Annexe N°3 : Caractéristiques thermodynamiques du Forane 134a

	19.500.5			rigorigène l tat saturé	R134a	11 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Température de saturation [°C]	Pression de saturation [bar]	Volume [dm	massique ³ /kg]	Enthalpie [kJ/		Chaleur latente de vaporisation [kJ/kg]	Entropie massique [kJ/kg.K]		
		Liquide	Vapeur	Liquide	Vapeur		Liquide	Vapeur	
60	16.82	0.950	11.39	286.3	425.1	138.74	1.280	1.697	
55	14.91	0.927	13.08	278.3	423.5	145.24	1.257	1.699	
50	13.17	0.907	15.02	270.4	421.7	151.29	1.233	1.701	
45	11.59	0.889	17.26	262.8	419.8	156.96	1.210	1.703	
40	10.15	0.872	19.86	255.4	417.7	162.31	1.187	1.705	
35	8.86	0.856	22.91	248.1	415.4	167.37	1.163	1.707	
30	7.69	0.842	26.50	240.9	413.1	172.19	1.140	1.708	
25	6.64	0.828	30.75	233.9	410.7	176.79	1.117	1.710	
20	5.71	0.816	35.81	226.9	408.1	181.21	1.094	1.712	
15	4.87	0.804	41.87	220.1	405.5	185.45	1.071	1.714	
10	4.14	0.793	49.19	213.3	402.8	189.55	1.047	1.717	
5	3.49	0.783	58.09	206.6	400.1	193.51	1.023	1.719	
5 0	2.92	0.773	68.98	200.0	397.3	197.36	1.000	1.722	
-5	2.43	0.763	82.42	193.4	394.5	201.10	0.975	1.725	
-10	2.00	0.754	99.15	186.8	391.6	204.74	0.951	1.729	
-15	1.63	0.745	120.1	180.4	388.6	208.29	0.926	1.733	
-20	1.32	0.737	146.8	173.9	385.7	211.75	0.901	1.737	
-25	1.06	0.729	180.9	167.5	382.7	215.15	0.876	1.743	
-30	0.84	0.721	225.1	161.1	379.6	218.48	0.850	1.748	
-35	0.66	0.714	283.0	154.8	376.6	221.75	0.823	1.755	
-40	0.51	0.707	359.9	148.5	373.5	224.96	0.797	1.762	

		FI	luide fri	gorigè	ne R134	ła	Vapeu	ır surcl	nauffée			
				Volu	ume ma	ssique	[dm³/k	g]				
Tsat Psat Surchauffe [K]												
[°C]	[bar]	0	5	10	15	20	25	30	40	50	60	70
60	16.82	11.4	12.0	12.5	13.0	13.4	13.9	14.3	15.1	15.8	16.5	17.2
55	14.91	13.1	13.7	14.2	14.8	15.2	15.7	16.2	17.0	17.8	18.6	19.3
50	13.17	15.0	15.6	16.2	16.8	17.3	17.8	18.3	19.3	20.2	21.0	21.8
45	11.59	17.3	17.9	18.6	19.2	19.7	20.3	20.8	21.9	22.9	23.8	24.
40	10.15	19.9	20.6	21.3	22.0	22.6	23.2	23.8	24.9	26.0	27.1	28.
35	8.86	22.9	23.7	24.5	25.2	25.9	26.6	27.2	28.5	29.7	30.9	32.0
30	7.69	26.5	27.4	28.2	29.0	29.8	30.5	31.3	32.7	34.1	35.4	36.
25	6.64	30.8	31.7	32.6	33.5	34.4	35.3	36.1	37.7	39.2	40.8	42.2
20	5.71	35.8	36.9	37.9	38.9	39.9	40.9	41.8	43.6	45.4	47.1	48.8
15	4.87	41.9	43.1	44.3	45.1	46.5	47.6	48.7	50.8	52.8	54.8	56.6
10	4.14	49.2	50.6	51.9	53.2	54.5	55.8	57.0	59.4	61.7	64.0	66.2
5	3.49	58.1	59.7	61.2	62.7	64.2	65.6	67.1	69.9	72.6	75.3	77.8
0	2.92	69.0	70.8	72.6	74.3	76.0	77.7	79.3	82.6	85.8	88.9	92.
-5	2.43	82.4	84.6	86.6	88.6	90.6	92.6	94.6	98.4	102	106	110
-10	2.00	99.2	102	104	106	109	111	114	118	123	127	132
-15	1.64	120	123	126	129	132	134	137	143	148	154	159
-20	1.33	147	150	154	157	161	164	167	174	181	187	194
-25	1.06	181	185	190	193	198	202	206	214	223	231	239
-30	0.84	225	231	236	240	246	251	256	266	277	287	297
-35	0.66	283	290	297	302	308	315	256	334	347	360	373
-40	0.51	360	369	377	383	391	399	408	424	441	457	474

		H	luide fri	igorigei	ne K134	ła	vapeu	ır surci	nauffée			
				Enthal	lpie ma	ssique	[k.	J/kg]				
Tsat	Psat					Sı	urchauffe	[K]				
[°C]	[bar]	0	5	10	15	20	25	30	40	50	60	70
60	16.82	425.11	431.99	438.56	444.93	451.12	457.19	463.17	474.92	486.47	497.92	509.3
55	14.91	423.56	430.09	436.40	442.53	448.53	454.43	460.25	471.73	483.05	494.30	505.5
50	13.17	421.78	428.03	434.1	440.02	445.84	451.58	457.26	468.48	479.58	490.63	501.6
45	11.59	419.83	425.82	431.67	437.42	443.07	448.66	454.19	465.17	476.06	486.92	497.7
40	10.15	417.72	423.49	429.15	434.72	440.21	445.66	451.07	461.81	472.50	483.18	493.8
35	8.86	415.49	421.06	426.53	431.94	437.29	442.60	447.89	458.41	468.9	479.40	489.9
30	7.69	413.14	418.52	423.83	429.09	434.30	439.49	444.66	454.96	465.26	475.59	485.9
25	6.65	410.70	415.91	421.06	426.18	431.26	436.33	441.38	451.48	461.59	471.75	481.9
20	5.71	408.17	413.22	418.23	423.21	428.17	433.12	438.07	447.96	457.90	467.89	477.9
15	4.88	405.56	410.46	415.34	420.19	425.03	429.87	434.72	444.42	454.18	464.01	473.9
10	4.14	402.88	407.65	412.39	417.13	421.86	426.59	431.33	440.85	450.44	460.11	469.8
5	3.49	400.15	404.78	409.40	414.02	418.65	423.28	427.92	437.26	446.68	456.21	465.8
0	2.92	397.35	401.86	406.37	410.89	415.41	419.94	424.49	433.65	442.91	452.29	461.7
-5	2.43	394.51	398.90	403.30	407.71	412.13	416.57	421.04	430.03	439.13	448.36	457.7
-10	2.00	391.62	395.90	400.20	404.51	408.84	413.19	417.56	426.39	435.34	444.42	453.6
-15	1.64	388.69	392.87	397.06	401.28	405.52	409.78	414.07	422.75	431.55	440.49	449.5
-20	1.32	385.72	389.80	393.90	398.03	402.18	406.36	410.57	419.09	427.75	436.55	445.5
-25	1.06	382.71	386.70	390.71	394.76	398.82	402.93	407.06	415.43	423.95	432.62	441.4
-30	0.84	379.67	383.57	387.50	391.47	395.46	399.48	403.54	411.77	420.15	428.69	437.4
-35	0.66	376.60	380.43	384.28	388.16	392.08	396.03	400.02	408.11	416.36	424.78	433.3
-40	0.51	373.51	377.26	381.03	384.84	388.69	392.57	396.49	404.45	412.58	420.87	429.3

		I	Fluide f	rigorige	ene R13	34a	Vape	eur surc	chauffé	е		
				Entrop	oie mas	sique	[k.	J/kg.K]				
Tsat	Psat					,	Surchauffe	[K]				
[°C]	[bar]	0	5	10	15	20	25	30	40	50	60	70
60	16.82	1.697	1.717	1.737	1.759	1.777	1.794	1.811	1.844	1.874	1.904	1.933
55	14.91	1.699	1.719	1.738	1.760	1.777	1.974	1.811	1.843	1.874	1.903	1.932
50	13.17	1.701	1.721	1.739	1.760	1.777	1.794	1.811	1.842	1.873	1.903	1.931
45	11.59	1.703	1.722	1.740	1.760	1.778	1.794	1.810	1.842	1.872	1.902	1.931
40	10.15	1.705	1.723	1.741	1.761	1.778	1.794	1.810	1.842	1.872	1.901	1.930
35	8.86	1.707	1.725	1.742	1.761	1.778	1.794	1.810	1.842	1.872	1.901	1.930
30	7.69	1.708	1.726	1.743	1.762	1.779	1.795	1.811	1.842	1.872	1.901	1.930
25	6.64	1.710	1.727	1.744	1.763	1.779	1.795	1.811	1.842	1.872	1.901	1.930
20	5.71	1.712	1.729	1.746	1.764	1.780	1.796	1.812	1.843	1.872	1.902	1.930
15	4.87	1.714	1.731	1.748	1.765	1.782	1.797	1.813	1.843	1.873	1.902	1.931
10	4.14	1.717	1.733	1.750	1.767	1.783	1.799	1.814	1.845	1.874	1.903	1.932
5	3.49	1.719	1.736	1.752	1.769	1.785	1.800	1.816	1.846	1.876	1.905	1.933
0	2.92	1.722	1.738	1.754	1.771	1.787	1.803	1.818	1.848	1.878	1.907	1.935
-5	2.43	1.725	1.742	1.757	1.774	1.789	1.804	1.819	1.849	1.878	1.906	1.934
-10	2.00	1.729	1.745	1.761	1.777	1.792	1.807	1.822	1.852	1.881	1.909	1.938
-15	1.63	1.733	1.749	1.765	1.780	1.796	1.811	1.826	1.856	1.885	1.913	1.941
-20	1.32	1.737	1.753	1.769	1.784	1.800	1.815	1.830	1.860	1.889	1.917	1.946
-25	1.06	1.743	1.758	1.774	1.789	1.805	1.820	1.835	1.865	1.894	1.922	1.951
-30	0.84	1.748	1.764	1.780	1.794	1.811	1.826	1.841	1.870	1.899	1.928	1.956
-35	0.66	1.755	1.770	1.786	1.800	1.817	1.832	1.847	1.877	1.906	1.935	1.963
-40	0.51	1.762	1.777	1.793	1.807	1.824	1.839	1.854	1.884	1.9132	1.942	1.970

Annexe N°4: Equipements hydrauliques

Vannes TA CONTROLS STAF

VANNE D'ÉQUILIBRAGE - PN 16 ET PN 25 (DN 20-400) - FONTE NODULAIRE

Vanne d'équilibrage caractérisée par une précision élevée et un champ d'applications étendu. Fabriquée en fonte nodulaire et pourvue de brides, la STAF-SG est prévue en premier lieu pour être utilisée du côté secondaire des installations de chauffage et de climatisation.

VALEURS KV_

DN 65-150

No de tours	DN 65-2	DN 80	DN 100	DN 125	DN 150
0.5	1,8	2	2,5	5,5	6,5
	3,4	4	6	10,5	12
1,5	4,9	6	9	15,5	22
2	6,5	8	11,5	21,5	40
2.5	9,3	11	16	27	65
2 2.5 3	16,3	14	26	36	100
3.5	25,6	19,5	44	55	135
4	35,3	29	63	83	169
4.5	44,5	41	80	114	207
5	52	55	98	141	242
5.5	60,5	68	115	167	279
6	68	80	132	197	312
6.5	73	92	145	220	340
7	77	103	159	249	367
7.5	80,5	113	175	276	391
8	85	120	190	300	420

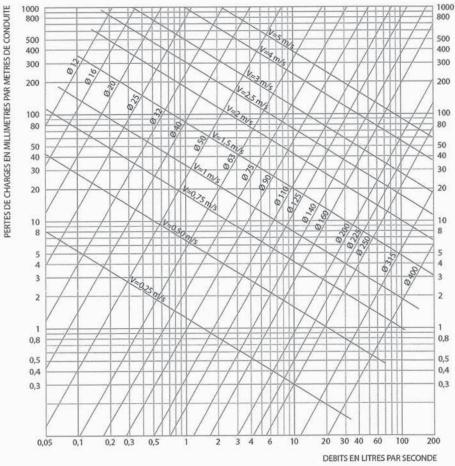
Compteur Eau froide

Woltman Wesan P froid Caractéristiques techniques

Désignation		Wesan P								
Calibre DN mr	n 50	65	80	100	125	150	200			

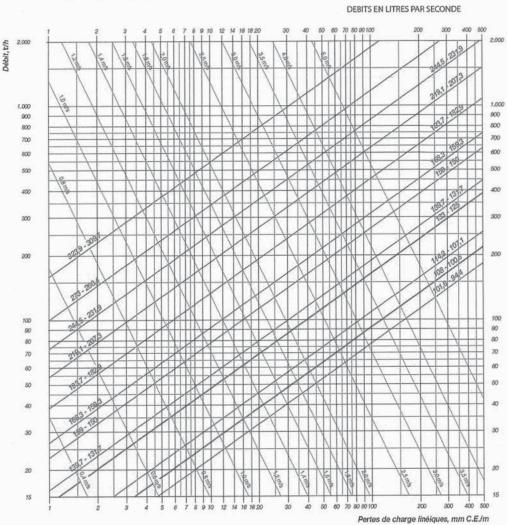
TEMPERATURES ET PRESSION

T. min. et max.		de 0°C à +50°C	
Pression nominale	bar	16	


PERTE DE CHARGE

Kvs	100	200	380	380	330	1000	2000
Σp be	bar = G² / Kvs² avec G en m²/						

Annexe N°5 : Abaques des pertes de charge linéiques


Pertes de charge linéiques Tubes d'adduction et de distribution d'eau (en mm)

en PVC PN 16

Pertes de charge linéiques Tubes ACIER (en mm)

T° d'eau = 10 °C

Annexe N°6: Pompes immergées

Gamme de pompes GRUNDFOS

Gamme SP

Pompes immergées

Caractéristiques techniques

Débit Q:

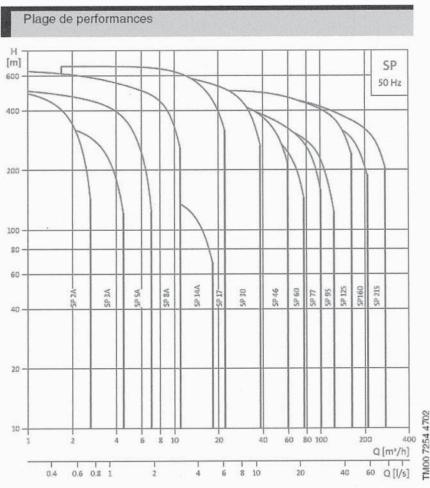
0,1 - 280 m³/h

Hmt H:

660 mCE

Temp. liquide:

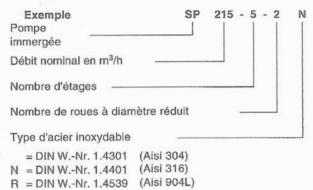
+40 °C


Indice de protection: IP 58

Domaines d'applications

- Adduction d'eau, compatibilité eau potable ACS
- Irrigation, arrosage
- Pompage dans les nappes phréatiques
- Surpression
- Applications industrielles

En standard, les pompes SP sont conçues pour le pompage de liquides clairs, propres et non agressifs.


Fiabilité et longévité grâce à une conception unique, entièrement en acier inoxydable, crépine d'aspiration, clapet anti-retour, paliers octogonaux évitant l'usure des chambres et des roues.

Caractéristiques générales

Pompes immergées

Désignation

Liquides pompés

Liquides clairs, propres, non-agressifs sans particules solides ou fibreuses.

Pour le pompage de liquides plus agressifs, des éxécutions spéciales SPA-N et SP-N en acier inoxydable AISI 316 ou SP A-R et SP - R en acier inoxydable AISI 904 L doivent être utilisées.

Conditions de fonctionnement

Débit Q:

0.1-280 m3/h.

Hmt:

600 mCE maxi.

Température maximum du liquide:

		nstallation	
Moteur	Vitesse du liquide aut- our du moteur	Vertical	Horizontal
Grundfos 4" and 6"	Convection libre 0 m/s	20°C	Chemise obligatoire
Grundfos 4" and 6"	0,15 m/s	40°C	40°C
Franklin 4"	0,08 m/s	30°C	30°C
Franklin 6" and 8"	0,16 m/s	30°C	30°C
Mercury	0,15 m/s	25°C	25°C

Pression de fonctionnement:60 bar maxi.

Courbes caractéristiques

Les conditions mentionnées ci-dessous s'appliquent aux courbes décrites dans les pages suivantes:

Généralités

- · Tolérances des courbes en accord avec la norme ISO 2548, Annex B.
- Les courbes caractéristiques s'appliquent aux pompes Grundfos équipées de moteurs fonctionnant aux vitesses de rotation suivantes (50 Hz):

moteurs 4":

 $n = 2870 \text{ min}^{-1}$

moteurs 6":

n = 2870 min-1

moteurs 8" et 12":

 $n = 2900 \text{ min}^{-1}$

- Les mesures sont faites avec de l'eau déaérée à une température de 20°C et une viscosité cinématique de 1mm2. Pour le pompage de liquides de densité supérieure à celle de l'eau, des moteurs de puissances supérieures doivent être utilisées.
- Les courbes incluent les pertes de charge internes de la pompe ainsi que celle du clapet.

Courbes des pompes SP A

- Q/H: La courbe Q/H inclue les pertes de charge internes de la pompe ainsi que celles du clapet.
- · Courbe de puissance: La courbe P2 indique la puissance par étage de la pompe.
- Courbe de rendement: Eta indique le rendement de la pompe par étage.

Courbes des pompes SP

- · Q/H: La courbe Q/H inclue les pertes de charge internes de la pompe ainsi que celles du clapet.
- Un fonctionnement sans clapet anti-retour augmente la hauteur manométrique de 0,5 m à 1,0 m.

Courbes pour 1 étage

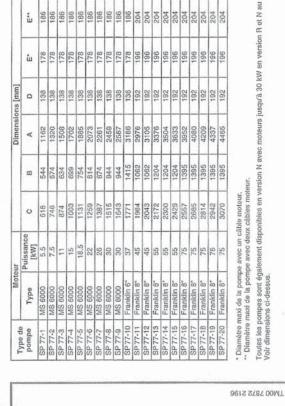
Les courbes pour 1 étage s'appliquent à 2900 min-1 en 50 Hz.

- Q/H: Courbe Q/H pour 1 étage.
- Q/Hr: Courbe Q/H pour 1 étage aves roues à diamètre réduit.
- NPSH: La courbe permet de calculer la pression d'entrée requise.
- H_{loss}: La courbe indique les pertes de charge dans l'entretoise et le clapet.
- P2: Courbe de puissance pour 1 étage.
- P2r: Courbe de puissance pour 1 étage aves roues à diamètre réduit.
- Eta: Les courbes indiquent le rendement de la pompe sans moteur:

Rendement de la pompe pour 1 étage. n=1

Rendement de la pompe pour 2 étage. n=2

Rendement de la pompe pour 4 étage. n=4

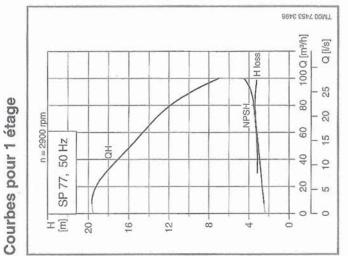

Rendement de la pompe avec plus de 4 étages (rendement par étage).

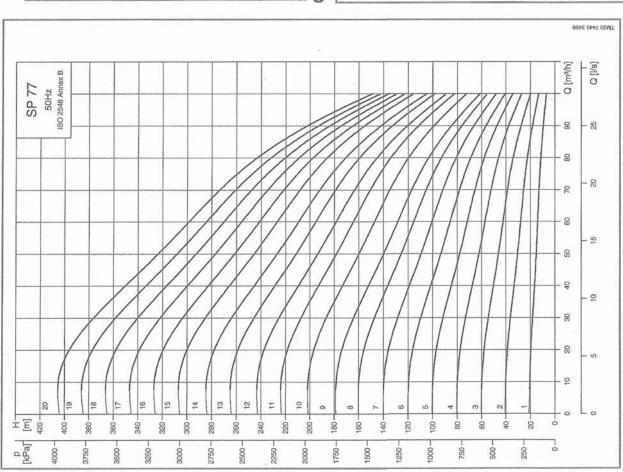
Caractéristiques techniques

Courbes de performance

Rp 5

0


Diamètre maxi de la pompe avec un câble moteur.
 Diamètre maxi de la pompe avec deux câbles moteur.


-0

В

foutes les pompes sont également disponibles en version N avec moteurs jusqu'à 30 kW en version R et N au delà, Yoir dimensions ci-dessus.

1M00 7454 3498 20 09 50 40 30 20 10 Eta [%] 80 100 Q [m³/h] Q [l/s] 8=u n=4 n=2=u 25 80 n = 2900 rpm 20 9 - 10 50 Hz Eta 40 - 0 77, 20 SP 7.0-0.0 8.0 6.0 5.0 4.0 3.0 0.1

Tournez la page S.V.P.

Annexe N°7: CTA HYDRONIC

SELECTION RAPIDE DES CENTRALES CCM RUICK SELECTION DE CCM AIR HANDLING LINITS

Chacun des types de centrale est représenté par un segment avec indication des vitesses d'air sur la section nominale de la batterie. Le choix de la vitesse d'air admissible est surtout fonction du rapport chaleur sensible sur chaleur totale. Généralement les vitesses retenues s'échelonnent entre 2 m/s et 4,5 m/s.

Each size is represented by a horizontal bar with various air velocities based on nominal coil areas. Appropriate air velocity is, above all, determined by the sensible heat / total heat ratio. Selected air velocity will generally fall between 2 m/s and 4,5 m/s.

· UTILISATION EN RAFRAICHISSEMENT:

CENTRALES HORIZONTALES

Sans séparateur

Avec séparateur tricot métallique M0

 Avec séparateur grande vitesse M1 (Vérifier courbes ventilateurs)

CENTRALES VERTICALES* (FLUX ASCENDANT SAUF COM 210-255)

Sans séparateur

- Jusque 3,00 m/s

- Jusque 2,80 m/s

- Jusque 3,25 m/s

- Jusque 4,5 m/s

· Aucune utilisation de séparateur

UTILISATION EN CHAUFFAGE

Toutes centrales

- Jusque 4,5 m/s

(Vérifier courbes ventilateurs)

* Les CCM 210, 255 et 315 n'existent pas en version verticale

· COOLING APPLICATION:

HORIZONTAL AHU'S

Without eliminator

- Up to 2,80m/s With steel eliminator MO

With high velocity eliminator M1

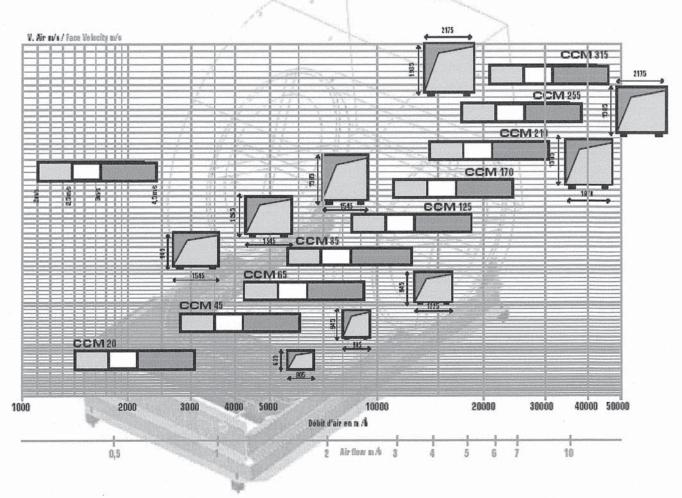
- Up to 3,25 m/s - Up to 4,5 m/s

(Check fan curves)

VERTICAL AHU'S* (UPWARDS AIRPLOWS EXCEPT CCM 210-255)

· Without eliminator

- Up to 3,00m/s


Eliminators are not available

· HEATING APPLICATION

· All AHU'S (Check fan curves) - Up to 4.5 m/s

Vertical arrangement are not available in COM 210, 255 and 315 sizes

PLAGES DE DÉBITS D'AIR / AIR FLOW RANGE

DESCRIPTIONS PARTICULIÈRES TECHNICAL DESCRIPTIONS

PRISE D'AIR ET CAISSON DE MÉLANGE

De nombreuses dispositions sont possibles:

- Registre à l'aspiration ou registre antigel
- Caissons prise d'air unique
- Caissons de mélange 2 voies
- Caissons de mélange 3 voies

Chaque prise d'air est munie d'une face de raccordement percée et peut être équipée d'une manchette souple MO.

Les registres montés à l'intérieur du volume de la centrale sont à lames opposées et,

- soit à profil aérodynamique CDO
- soit du type étanche CDE.

Ils sont équipés de bague nylon.

Les registres montés à l'extérieur sont équipés de roulements à billes.

Chaque ensemble de registres est doté d'un axe accessible (pour commande manuelle ou motorisation, en options)

En fonction de l'efficacité recherchée, plusieurs équipements de filtration peuvent être réalisés et différents types de montage adoptés.

- PRÉFILTRATION
- 2 possibilités avec dégagement latéral en glissières préfitres pleine section HYDRONIC.
 - G2 : Filtre plan en tricot d'acier galvanisé, 65% GRAVI, (EU2) classement au feu M0
 - G4 : Filtre plan, média synthétique plissé, 95% GRAVI, (EU4) classement au feu M1
- 2 possibilités des mêmes types de préfiltre, mais aux dimensions universelles, avec dégagement latéral en glissières à serrage frontal. (concept HYDRONIC)
- 1 possibilité avec dégagement frontal nécessitant un caisson d'accès.
 - Préfiltres plan dans cadres des poches courtes, rigides ou longues.

Dans ce cas, prévoir nécessairement les cadres et le dégagement frontal par accès.

- REGISTRE DE SÉCURITÉ
- Ce registre, identique à un registre de compensation, peut être incorporé derrière la filtration pour respecter la réglementation française (voir page 5). Il doit se situer en aval de toute filtration, qu'elle soit préfiltration, filtration ou postfiltration.

 • Pour certaines applications, il est possible de monter un FILTRE À SABLE à la place du cadre d'aspiration.

BATTERIES D'ECHANGE Tube Ø 12,7 mm

Les batteries déchange HYDRONIC sont normalement constituées de tubes cuivre et d'ailettes aluminium avec collecteurs en cuivre.

Les pas d'ailettes possibles sont 2,1 mm ou 2,5 mm ou 3,2 mm.

Les nombres de rangs possibles sont 1, 2, 3, 4, 6 ou 8 rangs.

Les batteries sont éguipées de joues en tôle galvanisée et sont montées en glissière dans des cassettes en tôle galvanisée.

Un bac en pente est prévu sous les batteries froides, évitant ainsi toute rétention d'eau.

Toutes les hatteries de CCM sont complètement amovibles, en glissières.

Deux types de séparateurs de gouttes peuvent être montés derrière les batteries froides, au-delà de 2,80 m/s, - L'un est efficace jusque 3,25 m/s (tricot métallique) MO

- L'autre, jusque 4,5 m/s (séparateur grande vitesse) M1.

Les batteries peuvent être alimentées en eau chaude, eau glacée (pouvant être glycolée) ou à détente directe.

Les batteries peuvent être également réalisées dans d'autres types de matériaux, avec un tube de 🗵 15,87 mm

acier/alu, cuivre/cuivre, cuivre/alu revêtu polyuréthane, cupro-nickel, inox.

La pression d'épreuve est de 20 bar pour une pression de service de 8 bar maximum.

GROUPE DE VENTILATION (suite)

Il comprend un ventilateur centrifuge à double ouïe du type à action ou à réaction, suivant les spécifications et un moteur d'entrainement monté sur un châssis réalisé en tôle galva pliée.

L'ensemble est isolé du caisson de ventilation par des silent-blocs et manchettes souples classées MO en standard.

La transmission est assurée par courroies trapézoïdales et poulies fonte ou aluminium suivant puissance. Elle est protégée par un carter permettant les mesures de vitesse, en option.

Le moteur est monté sur glissières pour permettre le réglage de la tension des courroies, il peut être de classes différentes suivant les besoins (au minimum : classe F).

Plusieurs combinaisons de ventilation peuvent être aménagées ; débit variable - vitesse variable - deux vitesses, etc...

Le ventilateur est choisi pour la meilleure adaptation aux caractéristiques aérauliques du réseau. Le modèle à réaction peut être doté d'inclineurs à réglage manuel ou automatique (sauf petites tailles : CCM 20 et CCM 45)

En option, un ventilateur à roue libre à entraînement direct avec variation de fréquence.

LONGUEURS FONCTIONNELLES SECTION LENGTHS

· Longueur utile des composants fonctionnels

· Length of functional components

A	Cado Symbol Désignation Cado		Désignation / Description	CCM								
量 5			Designation, Description	20			85	125	170	210	255	315
Discharge	2120	—————————————————————————————————————	Détente pour centrale superposée en «L» Discharge section for double deck unit	320	400	520	560	680	760	880	960	1040
Détente/Disc	65	→	Caisson mannequin dimension minimum Empty section. Minimum length	160	160	160	160	160	160	160	160	160

PRÉSÉLECTION DE MONTAGES COURANTS PRESELECTION DE USUAL ARRANGEMENTS

· Longueur (mm) de quelques dispesitions courantes et poids (kg)

· Preselected length of some usual arrangements and weigths

God		es / Arraegements					c	CM				
Cod				20	45	65	85	125	178	210	255	315
	MONOBLOC / 1											
L1	£ 1	Longueurs réélles mm Actual langths mm Poids pour	L1 =	984	1 104	1 264	1 344	1 584	1 664	1 784	1 944	2 184
	MONOBLOC / 1 PIECE	Poids pour moteur 300Pa disponible Weight	P1 =	99	132	179	550	311	371	471	580	700
L2	L2		L2 =	1 504	1 624	1 784	1 864	2 104	2 184	2 304	2 464	2 744
			P2 =	186	265	345	436	593	740	887	1046	1 325
	MONOBLOC / 1 PIECE											
L3	Z A A		L3 =	1 304	1 424	1 584	1 664	1 904	1 984	2 104	2 264	2 464
			P3 =	157	220	291	321	510	629	754	907	1 130
	1 OU 2 CAISSONS / 1 or 2	2 PIECES										
L4	38+00 R		L4 =	2 224	2 344	2 504	2 584	2 904	2 984	3 104	3 264	3 624
	RITO.		P4 =	234	319	414	534	784	938	1 125	1 323	1 655
MONOBLO	DC / 1 PIECE											
L5		* A	L5 =	1 704	1 944	2 101	2 184	2 544	2 744	2 864	3 024	3 544
			P5 =	212	307	396	500	704	874	1 142	1 341	1 670
	1 OU 2 CAISSONS / 1 or 2	2 PIECES										
LG	RRADIO	B	L6 =	2 424	2 664	2 824	2 984	3 344	3 544	3 664	3 824	4 344
	KRILI'A	4"	P6 =	259	361	470	644	877	1 067	1 297	1 524	1 880
	1 00 2 CAISSONS / 1 or 2	2 PIECES										
L7	THE RELI	⊝ (D) R	L7 =	3 504	3 984	4 304	4 464	5 264	5 664	5 824	6 144	7 184
	S LIKELI		P7 =	368	521	682	858	1 243	1 513	1 918	2 162	2 825
	2 CAISSONS / 2 PIECES	-1										
18	EBI O	SIB!	L8 =	3 784	4 024	4 184	4 264	4 624	4 824	4 944	5 104	5 704
	EU1	R EU9	P8 =	365	489	623	786	1 035	1 248	1 510	1 790	2 285

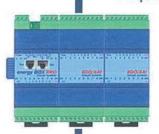
EU4 : filtre 95% Gravi / Prefilter 95% AG E 2B : Batterie chaude 2R / Heater hattery 2 rows

EU7 : Pache longue 85% OPA / Long hag filter 85% AO

g hag filter 85% A0 EUS : Poche longue 95% OPA / Long hag filter 95% A0
6R : Batterie froide 6 R avec tricot métallique / Cooling coil 6 rows
Ventilation taille nominale avec moteur your 300 Pa pression disponible / Nominal Fan size

Annexe N°8 : Système de GTB

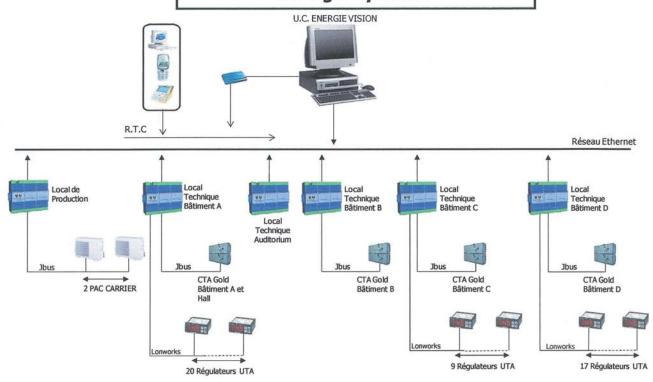
ENERGY BOX PRO – AUTOMATE DE GTB


ENERGY BOX PRO

Automate complet de GTB assurant ENERGY BOX PRO se compose l'exploitation des énergies et la de modules d'entrées/sorties

maintenance installations techniques.

Cet automate a été conçu pour offrir à nos clients une solution simple et compacte intégrant toutes les fonctionnalités nécessaires à la gestion technique du bâtiment. ENERGY BOX PRO se compose de modules d'entrées/sorties variés permettant de faire toutes les configurations possibles et d'être évolutif.

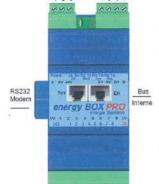

Il s'intègre dans une architecture ethernet TCP/IP en compatibilité avec le superviseur ouvert multisystèmes ENERGIE VISION.

CARACTÉRISTIQUES

- Chaque configuration automate est composée d'un module UC avec connexion ethernet 10BT et de modules d'entrées/sorties avec borniers débrochables
- Visualisation par leds des états et des commandes
- Installation sur rail DIN
- Une capacité totale de 360 points répartis en entrées digitales (DI), sorties digitales (DO), entrées analogiques (AI), sorties analogiques (AO)
- Modules d'extensions disponibles : 16DI, 16DO, 8DI/8DO, 16AI, 8AO
- Possibilité d'étendre l'architecture avec une liaison RS485
- Un ensemble complet de fonctions :
 - o Acquisition des données
 - Fonctions de régulation thermique, climatique et électrique (gestion multi tarifs)
 - Archivages automatiques des données, des commandes et des événements
 - o Gestion des alarmes en mode serveur
 - o Horaires hebdomadaires et annuels embarqués
 - Partage des données communes à un même site (T° extérieure, délestage...)
 - o Optimisation de l'énergie
- Possibilité de connexion locale d'un pocket ou d'un PC
- Possibilité d'une liaison vers équipements tiers : modbus/jbus, LonWorks...

ARCHITECTURE DU SYSTEME * Energie Système *

energy BOX®



energy BOX PRO MODULE UC PRO

8AO MODULE 8 SORTIES ANALOGIQUES

CO	NN	EC	TE	UF	25

CC	NNECTEURS			
1	Terre	.11	0 V	
2	Alim. 0 V	12	Entrée TOR DI1	3
3	Alim. 24Vdc	13	Entrée TOR DI2	
		14	Entrée TOR DI3	
-		15	Entrée TOR DI4	Ξ
		16	Entrée TOR DI5	
4	Sortie 5Vcc	17	Entrée TOR DI6	_
5	0V	18	Entrée TOR DI7	Ξ
6	Bus+	19	Entrée TOR DI8	
7	Bus-	20	nv	_

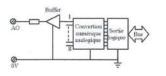
11-12-13-14-15-18-17-18-19-20

DESCRIPTION

energy BOX PRO est un automate GTB communiquant en Ethernet TCP/IP.

Alimentation:	Externe 24Vdc
Consommation:	5Vcc = 250mA
	24Vdc = 160mA
Alimentation 24Vdc:	Tension = 15 à 36Vdc
	Courant max = 6A
Alimentation 5Vcc:	Courant max = 1,45A
	Protection fusible 0.7A
Bus RS485:	Half duplex 3 fils
A 110 TO 100	Protection ESD = 15kV
	Bouchon = 120 Ohms
Liaison système :	RS232 Full duplex 5 fils /
	RJ12
Liaison modem :	RS232 Full duplex 9 fils / HE10
Port Ethernet :	Liaison 10 Base T
Entrée logique :	5mA / 24Vdc
Comptage :	Impulsion > 10ms
Fixation:	Rail DIN symétrique
Dimensions :	H/L/P 140/54/55 mm
Protection:	IP20
Température :	0 à 55°C
Hygrométrie relative de stockage :	95% sans condensation
Connectique :	Borniers débrochables
Visualisation:	Une LED par entrée
Conformité :	CE
Insertion module :	Slot N°1

Le 8AO est un module d'entrées/sorties du rack energy box. Il permet la commande de 8 sorties analogiques 0/10V.


CARACTERISTIQUES TECHNIQUES

Alimentation:	Par le Bus interne							
Consommation:	5Vcc = 115mA							
Sortie analogique :	0/10V							
No.	Résolution : 8 Bits							
	Pas:39mV							
	Précision : +/- 1 Bits Impédance : 100 Ohms							
Fixation:	Rail DIN symétrique							
Dimensions :	H/L/P 140/54/55 mm							
Protection:	IP20							
Température :	0 à 55°C							
Hygrométrie relative de stockage :	95% sans condensation							
Connectique :	Borniers débrochables							
Conformité :	CE							
Insertion module :	Slot N°2 à n							

CONNECTEURS

1	OV	6	OV
2	Sortie ana AO1	7	Sortie ana AO5
3	Sortie ana AO2	8	Sortie ana AO6
4	Sortie ana AO3	9	Sortie ana AO7
5	Sortie ana AO4	10	Sortie ana AO8

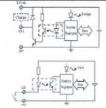
PRINCIPE DE FONCTIONNEMENT

energy BOX®

energy BOX®

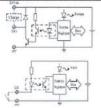
8DO/8DI MODULE 8 SORTIES ET 8 ENTREES DIGITALES

16AI MODULE 16 ENTREES ANALOGIQUES


1 - 2 - 3 - 4 - 6 - 6 - 7 - 8 - 8 - 10

DESCRIPTION

Le 8DO/8DI est un module d'entrées/sorties du rack energy BOX. Il permet la commande de 8 sorties TOR et l'acquisition de 8 états ou


CARACTERISTIQUES TECHNIQUES

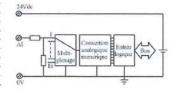
Alimentation:	Par le Bus interne
Consommation:	5Vcc = 150mA
	24Vcc = 80mA hors charges
Sorties logiques :	Courant Max 250mA par sortie
HUNDERS AND THE	Non protégé en court circuit
Entrée logique :	5mA / 24Vdc
Comptage :	Impulsion > 10ms
Fixation:	Rail DIN symétrique
Dimensions :	H/L/P 140/54/55 mm
Protection:	IP20
Température :	0 à 55°C
Hygrométrie relative de stockage :	95% sans condensation
Connectique :	Borniers débrochables
Visualisation:	Une LED par entrée
	Une LED par sortie
Conformité :	CE
Insertion module:	Slot N°2 à n

Insertion module: Slot N°2 à n

PRINCIPE DE FONCTIONNEMENT

DESCRIPTION

Le 16Al est un module d'entrées/sorties du rack energy BOX. Il permet l'acquisition de 16 entrées de type 0/20mA ou 4/20mA.


Vcc = 50mA 24Vdc = 0mA Hors
charges capteurs
Résolution : 10 Bits
Pas : 20µA
Précision : +/- 2 Bits
mpédance : 300 Ohms
Rail DIN symétrique
4/L/P 140/54/55 mm
P20
à 55°C
95% sans condensation
Borniers débrochables
CE
Slot N°2 à n

CONNECTEURS

Bus

1	٥٧	11	0V
2	Entrée ana Al1	12	Entrée ana Al9
3	Entrée ana Al2	13	Entrée ana Al10
4	Entrée ana Al3	14	Entrée ana Al11
5	Entrée ana Al4	15	Entrée ana Al12
6	Entrée ana Al5	16	Entrée ana Al13
7	Entrée ana Al6	17	Entrée ana Al14
8	Entrée ana AI7	18	Entrée ana Al15
9	Entrée ana Al8	19	Entrée ana Al16
10	24Vdc	20	24Vdc

PRINCIPE DE FONCTIONNEMENT

energy BOX®

11-12-13-14-15-16-17-18-19-20

12 Entrée 7 13 Entrée 7 14 Entrée 7

16 Entrée 17 Entrée 18 Entrée 19 Entrée 20 0V

CONNECTEURS

Sortie TOR DO2 Sortie TOR DO3 Sortie TOR

16 DI MODULE 16 ENTREES DIGITALES

energy BOX®

1-2-3-4-5-6-7-8-9-10

Bus

Interne

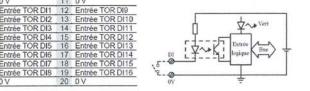
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 Bus

Entrée TOR DI1 12 Entrée Entrée TOR DI2 13 Entrée Entrée TOR DI3 14 Entrée

15 Entrée 16 Entrée 17 Entrée 18 Entrée

CONNECTEURS

Entrée


DESCRIPTION

Le 16DI est un module d'entrées/sorties du rack energy BOX. Il permet l'acquisition de 16 états ou

CARACTERISTIQUES TECHNIQUES

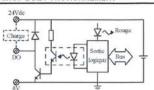
Alimentation:	Par le Bus interne
Consommation:	5Vcc = 190mA
	24Vdc = 80 mA
Entrée logique :	5mA / 24Vdc
Comptage:	Impulsion > 10ms
Fixation:	Rail DIN symétrique
Dimensions :	H/L/P 140/54/55 mm
Protection:	IP20
Température :	0 à 55°C
Hygrométrie relative de stockage :	95% sans condensation
Connectique :	Borniers débrochables
Visualisation:	Une LED par entrée
Conformité :	CE
Insertion module :	Slot N°2 à n

PRINCIPE DE FONCTIONNEMENT

DESCRIPTION

Le 16DO est un module d'entrées/sorties du rack energy box. Il permet la commande de 16 sorties TOR.

CARACTERISTIQUES TECHNIQUES


Alimentation:	Par le Bus interne
Consommation:	5Vcc = 90mA
	24Vcc = 120mA hors charges
Sorties logiques :	Courant Max 250mA par sortie
	Non protègé en court circuit
Fixation:	Rail DIN symétrique
Dimensions :	H/L/P 140/54/55 mm
Protection:	IP20
Température :	0 à 55°C
Hygrométrie relative de stockage :	95% sans condensation
Connectique:	Borniers débrochables
Visualisation:	Une LED par sortie
Conformité :	CE
Insertion module :	Slot N°2 à n

CONNECTEURS

Bus

1	0 V	11	0 V
2	Sortie TOR DO1	12	Sortie TOR DO9
3	Sortie TOR DO2	13	Sortie TOR DO10
4	Sortie TOR DO3	14	Sortie TOR DO11
5	Sortie TOR DO4	15	Sortie TOR DO12
6	Sortie TOR DO5	16	Sortie TOR DO13
7	Sortie TOR DO6	17	Sortie TOR DO14
8	Sortie TOR DO7	18	Sortie TOR DO15
9	Sortie TOR DO8	19	Sortie TOR DO16
40	C-+- 243/d-	20	Cartia 74 Vida

PRINCIPE DE FONCTIONNEMENT

Annexe N°9: Formulaires et tableaux de calcul des charges thermiques et hydriques

	ORIENTATION																
Date et heure	N	N/NE	NE	E/NE	Е	E/SE	SE	S/SE	S	S/S0	so	0/\$0	0	0/N0	NO	N/NO	ombre
21 Juin - 8 h	61	173	325	422	455	442	316	163	52	47	52	56	56	54	51	46	47
21 Juin - 9 h	76	134	278	402	462	457	376	242	108	71	71	75	75	73	70	66	72
21 Juin - 17 h	116	105	118	131	140	142	141	135	144	235	392	516	526	490	391	248	102
21 Juin - 18 h	137	87	96	107	115	117	115	109	114	163	308	452	474	462	390	270	81
21 Juil 13 h	128	143	170	200	226	238	266	308	338	344	323	243	204	146	132	127	150
21 Août - 9 h	77	86	199	353	451	476	440	334	183	77	70	71	70	67	63	60	74
21 Août - 16 h	105	108	121	138	156	164	182	197	266	412	507	533	505	410	271	132	121
21 Sept 11 h	65	68	91	146	274	363	504	510	440	315	171	75	72	69	67	65	93
21 Sept 13 h	84	85	100	130	171	201	354	474	520	496	419	242	166	91	85	84	114
21 Sept 14 h	85	86	98	122	155	176	250	392	500	535	507	371	296	151	89	85	114
21 Sept 15 h	81	82	91	111	137	153	203	286	438	527	551	468	404	259	113	82	105

Tableau 1 : Charge surfacique maximale par le vitrage en [W/m²]

	ORIENTATION																
Date et heure	N	N/NE	NE	E/NE	E	E/SE	SE	S/SE	S	S/S0	so	0/S0	0	O/NO	NO	N/NO	ombre
21 Juin - 8 h	- 1,4	- 1,3	- 0,9	- 0,6	- 0,6	- 0,6	- 1,0	- 1,3	- 1,3	- 0,9	- 0,2	0,2	0,2	0	- 0,4	- 1,1	- 2,0
21 Juin - 9 h	- 1,6	- 1,0	- 0,3	0	0	0	- 0,9	- 1,7	- 1,9	- 1,5	- 1,0	- 0,5	- 0,5	- 0,7	- 1,1	- 1,7	- 2,5
21 Juin - 17 h	2,2	3,6	5,4	7,2	8,3	8,6	8,3	7,3	6,3	5,8	5,5	4,7	4,2	3,5	2,6	2,0	2,1
21 Juin - 18 h	3,1	4,2	5,8	7,4	8,3	8,7	8,5	7,8	7,4	7,6	7,7	7,1	6,6	5,5	4,2	3,1	3,1
21 Juil 13 h	0,6	2,4	4,9	6,9	7,9	8,0	6,4	4,2	2,0	1,0	0,9	0,9	0,9	0,8	0,5	0,3	0,1
21 Août - 9 h	- 0,6	- 0,2	0,2	0,6	0,8	0,9	0,7	0,4	0,3	0,6	0,9	0,9	0,8	0,4	0	- 0,4	- 0,7
21 Août - 16 h	2,4	3,2	5,0	7,2	9,1	10,1	11,0	10,5	9,0	7,3	5,9	4,3	3,7	3,0	2,6	2,4	2,9
21 Sept 11 h	- 4,4	- 4,1	- 2,9	- 1,8	- 1,0	- 0,7	- 0,7	- 1,3	- 2,1	- 2,9	- 3,0	- 3,3	- 3,4	- 3,7	- 4,1	- 4,3	- 4,2
21 Sept 13 h	- 3,7	- 3,4	- 1,8	0,3	2,3	3,0	3,5	2,5	0,8	- 1,2	- 2,3	- 2,8	- 3,0	- 3,2	- 3,5	- 3,6	- 3,4
21 Sept 14 h	- 3,0	- 2,7	- 1,1	1,1	3,5	4,6	5,7	4,9	3,1	0,7	- 0,9	- 2,1	- 2,3	- 2,6	- 2,8	- 2,9	- 2,5
21 Sept 15 h	- 2,1	- 1,8	- 0,4	1,8	4,3	5,6	7,4	7,1	5,5	3,1	1,0	- 0,8	- 1,3	-1,7	- 1,9	- 2,1	- 1,5

Tableau 2 : Ecart virtuel de température en K, des parois verticales opaques des constructions traditionnelles

Parois opaques				
Туре	Nature			
Verticales	Construction avec bonne isolation	0,7		
	Construction courante	1,0		
	Construction ancienne peu isolée	1,3		
Horizontales	Construction avec bonne isolation	0,6		
	Construction courante	1,0		
	Contruction ancienne (toîture)	2,0		

Tableau 3 : Coefficient de correction de l'écart virtuel en fonction de la nature des parois

	Température ambiante								
Activité	21 °C		23 °C		25 °C		27	C	
	Sensible	Latent	Sensible	Latent	Sensible	Latent	Sensible	Latent	
Assis, au repos	79	31	73	37	67	43	59	51	
Debout, au repos	86	39	78	47	70	55	61	64	
Activité modérée (ex. : bureau, couture)	91	59	82	68	72	78	62	88	
Activité moyenne	95	80	84	92	73	102	62	110	
Activité importante	104	96	90	110	75	125	63	137	

Tableau 4 : Métabolisme humain en [W] Minoration : -20% pour les femmes, de -20 à -40% pour les enfants, -10% pour un public mixte

Annexe N°10 : Extrait de la réglementation

REGLEMENT SANITAIRE DEPARTEMENTAL TYPE

Art 64 - Ventilation mécanique ou naturelle par conduits

64.1 - Locaux à pollution non spécifique

Dans les locaux à pollution non spécifique, le débit normal d'air neuf à introduire est fixé dans le tableau cidessous. Ce débit est exprimé en litre par seconde et par occupant en occupation normale.

Destination des locaux	Débit minimal d'air neuf en litre par seconde et par occupant (air à 1,2 kg/m³)		
Locaux d'enseignement : Classes, salles d'études, laboratoires (à l'exclusion de ceux à pollution			
spécifique) - maternelles, primaires et secondaires du 1'' cycle	4		
- secondaires du 2 ^e cycle et universitaires	5		
Ateliers	5		
Locaux d'hébergement :			
Chambres, dortoirs, cellules, salles de repos	5		
Bureaux et locaux assimilés :			
Tels que locaux d'accueil, bibliothèques, bureaux de poste, banques	5		
Locaux de réunions :			
Tels que salles de réunions, de spectacles, de culte, clubs, foyers	5		
Locaux de vente :			
Tels que boutiques, supermarchés	6		
Locaux de restauration :			
Cafés, bars, restaurants, cantines, salles à manger	6		
Locaux à usage sportif :			
Par sportif:			
- dans une piscine	6		
- dans les autres locaux	7		
Par spectateur	5		

Pour les locaux où la présence humaine est épisodique (dépôts, archives, circulations, halls d'entrée...) et où l'organisation du plan ne permet pas qu'ils soient ventilés par l'intermédiaire des locaux adjacents, le débit minimal d'air neuf à introduire est de 0,1 l/s et par m².

En aucun cas, dans les conditions habituelles d'occupation, la teneur de l'atmosphère en dioxyde de carbone ne doit dépasser un pour mille avec tolérance de 1,3 °/-- dans les locaux où il est interdit de fumer.

Si l'occupation des locaux est très variable, la ventilation modulée ou discontinue est admise sous réserve que la teneur en dioxyde de carbone ne dépasse pas les valeurs fixées précédemment.

En cas d'inoccupation des locaux, la ventilation peut être arrêtée; elle doit cependant être mise en marche avant occupation des locaux et maintenue après celle-ci pendant un temps suffisant.

L'air neuf entrant dans ces locaux doit être pris à l'extérieur sans transiter dans d'autres locaux. Il peut être mélangé à de l'air dit recyclé mais sans que cela puisse réduire le débit minimal d'air neuf, nécessaire à la ventilation, fixé ci-dessus.

Le recyclage par groupe de locaux n'est autorisé que s'il ne concerne pas des locaux à pollution spécifique et que si l'air est filtré conformément aux dispositions ci-après relatives à la filtration.

REGLEMENT DE SECURITE CONTRE L'INCENDIE RELATIF AUX ETABLISSEMENTS RECEVANT DU PUBLIC

CHAPITRE V

Section VII - Traitement de l'air et ventilation

Article CH 29 Circuit de distribution et de reprise d'air

- § 1. Tous les conduits de distribution et de reprise d'air, à l'exception des joints, doivent être en matériaux de catégorie M0. Les calorifuges doivent être en matériaux de catégorie M0 ou M1; toutefois, s'ils sont de catégorie M1, ils doivent être placés obligatoirement à l'extérieur des conduits.
- § 2. Toute matière combustible est interdite à l'intérieur des conduits. Toutefois ces prescriptions ne concernent pas les accessoires des organes terminaux situés dans une pièce et ne desservant qu'elle. De même, en vue d'assurer une correction acoustique, des matériaux de catégorie M1 sont admis localement.
- § 3. Les moteurs actionnant des ventilateurs doivent être disposés en dehors du circuit d'air et dans un local non accessible au public. Toutefois, ils peuvent être placés dans le circuit d'air s'ils sont équipés d'un d'un dispositif thermique coupant automatiquement leur alimentation électrique en cas d'échauffement supérieur à celui autorisé par leur classe de température.
- § 4. Les conduits aérauliques desservant les locaux accessibles au public ne doivent comporter aucune partie ouvrante dans la traversée des chaufferies.
- § 5. Les conduits aérauliques traversant des parois :
 - d'isolement entre établissements, niveaux, secteurs et compartiments ;
 - · de recoupement des couloirs ;
 - des locaux à risques importants ;
 - des locaux à sommeil ;

doivent assurer un coupe-feu de traversée équivalant au degré coupe-feu des parois traversées selon les dispositions de l'article CO 30 dès que le diamètre nominal des conduits est supérieur à 125 mm. Les conduits de diamètre nominal inférieur ou égal à 125 mm doivent être conformes aux dispositions des articles CO 31 et CO 32.

Article CH 24 Dispositifs de sécurité

- § 1. Dans les locaux ventilés, chauffés par air chaud ou conditionnés par air pulsé, un dispositif de sécurité doit assurer automatiquement l'extinction ou la mise en veilleuse de l'appareil ou de l'échangeur de chauffage de l'air et l'arrêt des ventilateurs lorsque la température de la veine d'air dépasse 120 °C. Ce dispositif doit être placé dans le conduit, en aval du réchauffeur. Ce dispositif n'est pas exigible lorsque le réchauffage de l'air est assuré par un échangeur alimenté au primaire par un fluide dont la température est inférieure ou égale à 110°C.
- § 2. L'arrêt du ou des ventilateurs doit pouvoir être obtenu d'au moins deux points de l'établissement judicieusement choisis ; l'une de ces commandes d'arrêt doit obligatoirement être placée dans un local directement accessible de l'extérieur.
- § 3. Lorsque l'établissement est doté d'un système de sécurité incendie de catégorie A, le raccordement à celuici est recommandé.

Article CH 35 Utilisation des fluides frigorigènes

- § 1. Les fluides frigorigènes sont classés en trois groupes définis par la norme NF E35-400. Leurs conditions d'utilisation tant pour le conditionnement d'air que pour toute autre application doivent respecter les dispositions de cette norme :
 - le groupe 1 comprend les fluides frigorigènes non inflammables et dont l'effet toxique est nul ou minime;
 - le groupe 2 est formé des fluides frigorigènes dont la toxicité est la caractéristique dominante. Certains d'entre eux, mélangés à l'air, sont inflammables et explosibles dans un intervalle de concentration limité;
 - le groupe 3 est celui des fluides dont les caractéristiques dominantes sont l'inflammabilité et le pouvoir explosif. Ces fluides ne sont pas, d'une façon générale, toxiques.
- § 2. L'emploi du groupe 1 est autorisé dans les locaux accessibles au public. L'emploi des fluides du groupe 2 est autorisé uniquement dans les autres parties de l'établissement, sous réserve qu'ils soient utilisés à l'extérieur ou en salle des machines distinctes de la chaufferie et seulement en système d'échange indirect. L'emploi des fluides du groupe 3 est interdit.
- § 3. En aggravation des dispositions de la norme NF E35-400, lorsque les équipements frigorifiques utilisant des fluides du groupe 1 sont placés dans un local recevant du public, les compresseurs doivent être du type hermétique ou hermétique-accessible. De plus, la capacité totale des appareils ne doit pas dépasser la valeur obtenue en multipliant la limite de concentration du fluide par le volume du local.
- § 4. L'emploi des fluides frigorigènes dans les pompes à chaleur doit répondre aux prescriptions des normes les concernant. Toutefois, en attendant la publication de ces normes, les dispositions de la norme NF E 35-400 leur sont applicables.

Article CH 36 Centrale de traitement d'air

On entend par centrale de traitement d'air, les équipements de traitement d'air raccordés à un réseau de distribution et desservant plusieurs locaux ou traitant plus de 10 000 N mètres cubes par heure d'air.

Les centrales doivent être conformes aux dispositions suivantes :

- les caissons doivent être métalliques ou maçonnés. Toutefois, certains éléments combustibles tels que joints, produits d'étanchéité et de fixation, courroies de transmission, amortisseurs et autres éléments similaires sont admis;
- l'isolation doit être réalisée avec des matériaux de catégorie M1;
- o les batteries électriques doivent répondre aux spécifications de l'article CH 37 ;
- les humidificateurs doivent être composés d'éléments métalliques (tuyauteries, séparateurs de gouttes) avec possibilité d'utilisation de matériaux de catégorie M3 pour les petits accessoires (gicleurs, par exemple) et, dans le cas d'humidificateurs à ruissellement, pour les revêtements;
- o les ensembles de filtration doivent répondre aux spécifications des articles CH 38 et CH 39 ci-après ;
- o il est interdit d'injecter tout produit germicide, désinfectant ou désodorisant dans le flux d'air, sans avis favorable de la commission centrale de sécurité sur le produit.

Article CH 37 Batteries de résistances électriques

Les batteries de résistances électriques, quelle que soit leur puissance, placées dans les veines d'air doivent être installées conformément aux prescriptions suivantes :

- 1. L'alimentation électrique des batteries centrales et terminales doit être impossible en cas de nonfonctionnement du ventilateur.
- 2. Des thermostats de sécurité à réarmement manuel (coupe-circuit thermique) doivent être placés au niveau de chaque batterie, à 15 centimètres maximum en aval afin de couper l'alimentation électrique de la batterie considérée en cas d'échauffement de la veine d'air à plus de 120°C.
- 3. Les batteries électriques doivent être installées dans des caissons ou conduits réalisés en matériaux de catégorie MO. Les éléments réalisés en matériaux de catégorie autre que MO, s'il yen a, doivent être protégés du rayonnement direct de ces batteries.

Article CH 38 Filtres

Les filtres ou ensemble de filtration de l'air, utilisés dans les centrales traitant plus de 10000 N mètres cubes par heure d'air ou desservant des locaux réservés au sommeil doivent répondre aux prescriptions suivantes :

- 1. L'ensemble des matériaux constituant les filtres doit être de catégorie M3. Un détecteur autonome sensible aux fumées et gaz de combustion, installé en aval du caisson de traitement d'air et à l'origine des conduits de distribution, doit commander automatiquement l'arrêt du ventilateur, la fermeture d'un registre métallique situé en aval des filtres, et, s'il ya lieu, la coupure de l'alimentation électrique des batteries de chauffe. Ce détecteur autonome déclencheur doit de plus être admis à la marque NF Matériel de détection d'incendie et être estampillé comme tel, ou faire l'objet de toute autre certification de qualité en vigueur dans un Etat-membre de la Communauté économique européenne. Cette certification devra alors présenter des garanties équivalentes à celles de la marque NF Matériel de détection d'incendie, notamment en ce qui concerne l'intervention d'une tierce partie indépendante et les performances prévues dans les normes correspondantes.
- 2. Les matériaux de catégorie M4 ou non classés peuvent être utilisés dans les mêmes conditions s'il s'agit de filtres régénérables par lavage à l'eau dans leur caisson. Dans ce cas, la masse de ces matériaux est limitée à 0,5 gramme par mètre cube par heure de débit de l'installation.
- 3. Les filtres dont les matériaux sont de catégorie M4 ou non classés peuvent toutefois être utilisés, sans régénération ni limitation de masse, à condition que l'installation comporte en aggravation des dispositions prévues au 1 ci-dessus :
 - soit un clapet assurant un coupe-feu de traversée de 30 minutes à la place du registre métallique ;
 - soit le maintien du registre métallique complété d'un dispositif approprié d'extinction automatique asservi au détecteur autonome.
- 4. Dans le cas d'utilisation de filtres à l'huile toutes dispositions doivent être prises pour éviter un entraînement d'huile dans les conduits ; le constructeur doit Indiquer la vitesse limite de passage de l'air sur le filtre.
- 5. Les caissons contenant les filtres doivent être en matériaux de catégorie MO à l'exception des joints, colles et produits d'étanchéité. Les caissons doivent être éloignés de tout matériau combustible par un espace d'au moins 0,20 mètre ou revêtus d'une protection assurant une sécurité équivalente.
- 6. Les accès aux filtres doivent être munis d'une plaque métallique portant les indications ci-après :

DANGER D'INCENDIE, FILTRES EMPOUSSIÉRÉS INFLAMMABLES

Article CH 38 Entretien des filtres

Afin de contrôler le chargement en poussières des filtres et de maintenir leurs caractéristiques de bon fonctionnement, les dispositions suivantes seront prises :

- 1. L'utilisateur doit tenir un livret d'entretien de l'installation de filtration faisant référence aux recommandations de l'Installateur et du fabricant du filtre.
- L'Installateur, sur les indications du fabricant du filtre, doit fixer une valeur de perte de charge maximale au débit nominal, dont le dépassement devra entraîner le nettoyage ou le changement des filtres. Cette valeur sera consignée dans le livret d'entretien.
- 3. L'installateur doit mettre en place des prises de pression et fournir un manomètre permettant d'effectuer la comparaison de la perte de charge des filtres, en fonctionnement au débit nominal, à la perte de charge maximale admise ; les prises de pression doivent être métalliques ou en matériaux de catégorie MO.
- 4. Une visite périodique doit être effectuée par l'utilisateur ou son représentant. Cette périodicité ne doit pas être supérieure à un an.
- 5. Les visites, mesures, nettoyages, ou rangements de filtres, doivent être notés sur le livret d'entretien.