CONCOURS EXTERNE DE RECRUTEMENT
DE PROFESSEURS DE L’ENSEIGNEMENT PROFESSIONNEL
ET CONCOURS D’ACCÈS À LA LISTE D’APTITUDE

Section : GÉNIE INDUSTRIEL
Option : BOIS

SCIENCES ET TECHNIQUES INDUSTRIELLES

Durée : 6 heures

Calculatrice de poche non programmable autorisée.
L’usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique
est rigoureusement interdit.

Dans le cas où un(e) candidat(e) repère ce qui lui semble être une erreur d’énoncé, il (elle) le signale très
lisiblement sur sa copie, propose la correction et poursuit l’épreuve en conséquence.
De même, si cela vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les)
mentionner explicitement.

NB : Hormis l’en-tête détachable, la copie que vous rendez ne devra, conformément au principe d’anonymat,
comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé
comporte notamment la rédaction d’un projet ou d’une note, vous devrez impérativement vous abstenir de
signer ou de l’identifier.

Tournez la page S.V.P.
LIT D’ENFANT

DOCUMENTS REMIS AU CANDIDAT :
Texte de l’épreuve : 5 pages
Dossier documents techniques : 5 pages
Dossier documents ressources : 6 pages

DOCUMENTS A RENDRE PAR LE CANDIDAT :
Feuilles de copies bien paginées et réponses numérotées correctement.

Texte de l’épreuve

Objectif de l’étude :

Le thème d’étude portera sur un lit d’enfant présenté sur le document technique DT 1 et DT2.
Le travail concernera la vérification de la conformité de certains éléments de la structure vis à vis des normes et des règles de calcul des structures en vigueur.

Présentation de l’étude du lit d’enfant :

Situé dans une chambre d’enfant, ce lit à barreaux est destiné à des enfants âgés de 2 mois à 3 ans.
Ce lit est constitué d’un sommier supportant le matelas, d’un encadrement recevant les barreaux afin de prévenir les chutes, d’un tiroir en partie basse pouvant servir de rangement. La face avant peut coulisser afin de prendre l’enfant dans de meilleures conditions. Ce dispositif est pourvu d’un verrouillage rendant inopérant toute manipulation de l’enfant.

Hypothèses de travail :

L’essence utilisée est du hêtre.

Le hêtre utilisé sera conforme au document DR2 sur lequel figurent ses caractéristiques principales.

La charge verticale maximale pour un enfant de 3 ans est définie par le cahier des charges sur le document ressources DR1 page 2.

Le poids propre des éléments, lorsqu’il n’est pas précisé, sera négligé.

On prendra g = 10 m/s² comme valeur de l’accélération de pesanteur.

Toutes les liaisons sont supposées parfaites.
Travail à réaliser par le candidat

I. MODELISATION DU SYSTEME DE VERROUILLAGE:

- Objectif : proposer une solution de verrouillage

Le modèle est fourni sous la forme de schéma cinématique (DT3 : modélisation du système de verrouillage).

1) A partir du document technique DT3, identifier et nommer les liaisons.

2) Donner la nature des mobilités pour chacune des liaisons.

3) Calculer le degré d’hyperstatisme du modèle proposé (position haute verrouillée).

4) Proposer une solution constructive en fonction de la modélisation proposée, la représenter sous forme de croquis à main levée.

5) Comment modifier la solution pour diminuer l’hyperstatisme, quelles sont les conséquences constructives ?

II. ETUDE DU SOMMIER

- Objectif : choix d’une solution constructive de l’assemblage des lattes sur les longs pans à partir d’une étude de déchaussement.

Des éléments de la norme sont fournis au candidat : Lits fixes et lits pliants pour enfants à usage domestique, méthodes d’essais (DR1 : NF EN 716-2). Le document DT5 précise l’assemblage d’une lame (ou latte) sur un long pan ainsi que ses caractéristiques géométriques.

1) Donner en fonction des documents fournis les paramètres influants de l’essai de résistance du sommier (essai de choc) : caractéristiques du corps d’épreuve, conditions de l’essai …

2) Évaluer la vitesse d’impact du corps d’épreuve à l’arrivée sur le sommier. Pour cela vous mènerez une étude cinématique du corps d’épreuve en supposant une vitesse initiale \(V_0 = 0 \) m/s. Déterminer l’expression littérale puis effectuer l’application numérique.

3) Afin de déterminer le modèle de déformation dynamique d’une lame de sommier vous répondrez successivement aux questions suivantes :

3.1 Donner l’expression littérale de la flèche \(f \) sous charge statique en fonction des paramètres d’après le document DT4 (1ère partie).

3.2 La force \(F \) a lieu lors de l’impact du corps d’épreuve sur le sommier. Exprimer l’effort \(F \) en fonction de la masse \(m \) et de l’accélération \(a \) du corps d’épreuve.

3.3 Justifier le modèle dynamique de la lame de sommier suivant :
\[j = \frac{48EI}{mL^3} \cdot y = 0 \] (avec \(y \) déplacement de la lame de sommier et \(\dot{y} = \frac{d^2y}{dt^2} \))

4) Résolution du problème dynamique

4.1 Donner les conditions initiales du problème

4.2 Résoudre littéralement le modèle de déformation précédent en exprimant la flèche sous sollicitation dynamique \(f_{\text{dyn}} \) à partir des paramètres du problème

4.3 Effectuer l’application numérique en utilisant les caractéristiques de l’essai

5) Comparer la flèche \(f_{\text{stat}} \) due à un chargement statique (DT4 1ère partie) à la flèche \(f_{\text{dyn}} \) de l’essai dynamique. Exprimer le rapport de flèche sous forme littérale, puis effectuer l’application numérique.

6) Nous proposons d’évaluer le déchaussement d’une lame dans le cas d’un assemblage par mortaise dans le long pan

6.1 Exprimer à partir du document DT4 2ème partie: étude du déchaussement, l’expression du déplacement \(\Delta L \) en fonction de \(L_0 \) et de la flèche \(f \)

6.2 A partir de l’expression de la flèche \(f_{\text{dyn}} \) (question 4.2), exprimer sous forme littérale le déplacement \(\Delta L \). Effectuer l’application numérique correspondante

7) Conclusion sur un déchaussement éventuel de la lame.

8) Une autre solution constructive d’assemblage serait l’utilisation de lames clouées sur une feuillure du long pan.

Quelles sont les contraintes constructives à respecter ?
Présenter les avantages et/ou inconvénients par rapport à la solution précédente.

III. ÉTUDE DES COTES DU LIT – ÉTUDE D’UNE LATTE COURBE

- Objectif : vérification de la résistance des éléments sous contrainte

La norme NF EN 716-2 prévoit une vérification de la résistance des balustres (DT2, Rep 2) et des Long-pans (DT2, Rep 12,13).
Trois modèles d’étude de ces résistances sont proposés dans le document ressources DR5. Ces trois modèles permettent de réaliser la vérification de la résistance des éléments suivants.

1. résistance en flexion des balustres, (DR5, figure 1)
2. résistance en flexion de la barre supérieure du coté du lit, (DR5, figure 2)
3. résistance en traction transversale des extrémités du long-pan (DR5, figure 3).

La fiche technique du hêtre est donnée sur le document DR2.

III.1. Vérification des balustres.

Les balustres sont soumis à l’action d’une force de 250 N appliquée au milieu de ces derniers (figure 1, DR5).
1- Déterminer le degré d’hypersatricité du balustre étudié.
2- Déterminer les actions de liaison aux extrémités A et C des balustres.
3- Déterminer les équations des efforts intérieurs de cohésion.
4- Tracer les digrammes de l’effort tranchant V_y et du moment fléchissant M_{YZ}.
5- Vérifier la résistance à contrainte normale de flexion et au cisaillement longitudinal des balustres.

III.2. Vérification de la résistance du Long pan FH (Rep 13, figure 2, DR5).

Le Long-pan étudié est représenté sur la figure 2 du document ressources DR5. La force F_D appliquée au long-pan est la valeur maximale entre une force de 250 N fixée par la norme NF-EN 716-2 et une force $F_{tot,h}$ définie dans l’extrait du cahier des charges (DR1, page 2).

Remarque :
Les balustres ainsi que les perçages recevant ces balustres ne sont pas pris en compte pour cette étude. Le long-pan étudié sera donc une poutre droite sans perçage dont le modèle est donné sur le document DR5.

1- Déterminer la force verticale $F_{tot,V}$, induite par un enfant sur le lit.
2- Déterminer la force horizontale $F_{tot,h}$, induite par un enfant sur le lit.
3- En déduire la force F_D appliquée au long pan.

4- Déterminer les actions de liaison en N et P (Y_N et Y_P).
5- Déterminer les valeurs de l’effort tranchant V_y et du moment fléchissant M_{YZ}.
6- Vérifier la résistance de la barre aux contraintes tangentielles de cisaillement longitudinal et normales de flexion.
7- Déterminer la profondeur de pénétration de la vis ($L_v = 2a$) dans le long-pan, pour que la résistance en traction transversale des extrémités du long-pan soit satisfaite (DR5, figure 3). En déduire la longueur total (L) de la vis.

La contrainte admissible en traction transversale du hêtre est de 1,2 MPa. L et L_v sont fonction du diamètre d_1 de la vis.

III.3. Cotisation d’une latte courbe. (Figure 1, DR3)

Afin de limiter la déformation des lattes ou leur déchirement, une variante de latte avec contre flèche f_c est proposée par le bureau d’étude, ces lattes de forme courbe ont la forme d’un arc de cercle de R (R : rayon de l’axe d’une latte du sommier).

1- Tracer la chaine de cotes qui permet d’installer le jeu J (figure 1-b, DR3).
2- Ecrire la relation qui permet de définir le jeu J.
3- Déterminer les relations pour calculer A_{maxi} et A_{mini}

Pour les questions 2 et 3, seul un calcul littéral en fonction de J, R, f_c et θ est demandé. θ est l’angle que font les sections d’extrémité de la latte courbe non déformée.
IV. ETUDE DU BASCULEMENT DU LIT

- Objectif : Vérification du basculement du lit selon des conditions fixées par la norme NF EN 716-2 et le cahier des charges (document DR1).

On vous appuyant sur l’extrait de la norme 716-2 (DR1, 1.3 Stabilité) et du document ressource DR3 (figure2):

2. Déterminer le poids du lit vide et sans tiroir.
 Le volume du lit vide est : \(V_{l1} = 22375 \text{ cm}^3 \)

Le poids de la quincaillerie du lit sera négligé.

IV.2. Vérification du lit chargée, tiroir compris.

Le cahier des charges impose, en plus de la norme EN N F716-2, une vérification du risque de basculement du lit chargé tel qu’il est défini sur le document ressource DR4.

1. Déterminer les poids \(P_{1,1} \), \(P_{1,2} \), \(P_{2,1} \) et \(P_{2,2} \).
 \(P_C = F_{Ft,V} \) et \(F_D = F_{Ft,h} \) : forces calculées en III.2.

Données :

<table>
<thead>
<tr>
<th>Volumes en cm³</th>
<th>Masse volumique en kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{l1} = 22375)</td>
<td>(\rho_l = 30) matelas</td>
</tr>
<tr>
<td>(V_{tiroir/van} = 14775)</td>
<td>(\rho_l = 200) affaires dans le tiroir</td>
</tr>
<tr>
<td>(V_{utile/tiroir} = 69588)</td>
<td></td>
</tr>
<tr>
<td>(V_{matelas} = 38911)</td>
<td></td>
</tr>
</tbody>
</table>

Le poids des quincaillerie sera négligé.

2. Déterminer la distance \(X_{maxi} \) (DR4, figure 1) d’ouverture du tiroir sans provoquer le basculement du lit.
 Pour des raisons de symétrie, l’étude est proposée dans le plan (O, X, Y).

LIT D’ENFANT

DOSSIER TECHNIQUE

DT1 VUE D’ENSEMBLE DU LIT
DT2 VUE DE L’ECLATE DU LIT
DT3 MODELISATION DU SYSTEME DE VERROUILLAGE
DT4 MODELES D’ETUDE
DT5 CARACTERISTIQUE ASSEMBLAGE
DT3 : modélisation du système de verrouillage

Position haute (verrouillée)

Position basse (déverrouillée)
DT4 : Modèles d'étude

1ère partie

Lame de sommier assimilée à une poutre :
- Longueur \(L \)
- Epaisseur \(e \)
- Largeur \(b \)
Les appuis sont des appuis simples et l'effort \(F \) est concentré à un \(e \) distance \(L/2 \)

modèle équivalent : étude du déchaussement

2ème partie
DT5 : Caractéristique assemblage

Long pan

Lame

COUPE A-A

DÉTAIL B
LIT D’ENFANT

DOSSIER RESSOURCES

DR1 EXTRAIT DE NORME (2 PAGES)
DR2 FICHE TECHNIQUE DU HÊTRE (1 PAGE)
DR3 COTATION STABILITÉ LIT SANS TIROIR (1 PAGE)
DR4 STABILITÉ LIT AVEC TIROIR (1 PAGE)
DR5 FORMULAIRE ET MODELES D’ETUDE (2 PAGES)
DR6 FICHE TECHNIQUE COULISSES DE TIROIRS (1 PAGE)
1. **Extrait de la norme 716-2 :2008** :

1.1. **Domaine d’application** :

La présente partie de l’EN 716 détermine les méthodes d’essai pour s’assurer de la sécurité des lits fixes et lits pliants pour enfants, à usage domestique. Elle s’applique aux lits fixes et aux lits pliants, de longueur intérieure comprise entre 900 mm et 1400 mm, conçus pour éviter que l’enfant ne se hisse hors du lit. Elle ne couvre pas les lits à bascule et à balancelle. Les essais sont conçus pour être appliqués à un lit entièrement assemblé et prêt à l’usage. Dans le cas où la conception du produit ne permet pas d’appliquer les modalités d’essai, l’essai devrait être réalisé de la manière la plus proche possible du mode opératoire décrit et les écarts doivent être notés.

1.2. **Essai de choc** :

1.2.1. **Corps de choc pour le fond** :

Corps de choc ayant une masse totale de 10 kg en bois dur ou d’un matériau équivalent, et de dimensions conformes à la figure suivante (dimensions en mm) :

1.2.2. **Matelas d’essais** :

Plaque de mousse polyéthylène, d’une épaisseur de 50 mm, d’une densité de 30 ± 2 kg/m3 de facteur d’indentation 170 ± 20 N, de dimensions minimales 400 mm x 800 mm et de largeur inférieure à la base du matelas du lit soumis à l’essai.

...

1.2.3. **Modes opératoires d’essai** :

Résistance du sommier (essai de choc) : Placer le matelas d’essai à plat sur le sommier. Laisser tomber le corps de choc 1000 fois, à une fréquence ne dépassant pas 30 fois/min, à une distance de 150 mm au dessus du sommier, sur le matelas d’essai, en tous points de choc choisis. Le corps de choc doit tomber librement.

1.3. **Stabilité, Basculement du lit vide et sans tiroir** :

Le lit doit être essayé sans matelas, à moins que ce dernier ne fasse partie intégrante du lit.

Placer le lit sur le sol, les pieds bloqués par les butées d’arrêt, sans empêcher le basculement.

Régler le sommier à sa position la plus haute.

Attacher une charge d’essai à l’intérieur du lit, au milieu du bord supérieur du coté/dela l’extrémité du lit, de telle sorte que son centre de gravité soit à 50 mm en dessous du bord supérieur du coté/dela l’extrémité (Figure 1).

Du même coté/extrémité, applique une force horizontale de 30 N dirigée vers l’extérieur, au milieu du coté/dela l’extrémité du lit. *Noter si le lit se renverse.*
2. **Extrait du cahier des charges** : *Forces induites par un enfant sur le lit*

La charge induite par des enfants sur un équipement est une action mécanique variable définie dans le cahier des charges.

Cette charge est définie comme suit :

- **Masse totale**
 \[G_n = n \times m + 1,64 \times \sigma \sqrt{n} \]

Où :
- \(G_n \) est la masse totale de \(n \) enfants, en kilogrammes,
- \(n \) est le nombre d’enfants utilisant un équipement (pour un lit \(n=1 \)),
- \(m \) est la masse moyenne des enfants appartenant à un groupe d’âge spécifié
- \(\sigma \) est l’écart type pour le groupe d’âge considéré

Les valeurs de \(m \) et \(\sigma \) sont données ci-dessous :

- Jusqu’à 4 ans : \(m = 16,7 \text{ kg} \) \(\sigma = 2,1 \text{ kg} \)
- Jusqu’à 8 ans : \(m = 27,9 \text{ kg} \) \(\sigma = 5 \text{ kg} \)
- Jusqu’à 12 ans : \(m = 41,5 \text{ kg} \) \(\sigma = 7,9 \text{ kg} \)

- **Charge totale verticale induite par l’utilisateur**

 \[F_{tot,v} = g \times G_n \times C_{dyn} \]

Où :
- \(F_{tot,v} \) est la charge totale verticale induite par l’utilisateur sur le lit, provoquée par \(n \) enfants, en newtons
- \(g \) est l’accélération due à la pesanteur, \(g = 10 \text{ m/s}^2 \)
- \(G_n \) masse totale (voir A2.2.)
- \(C_{dyn} \) coefficient représentant l’effet dynamique induit par les mouvements de l’enfant.

\[C_{dyn} = 1 + 1/n \]

- **Charge totale horizontale induite par l’utilisateur**

La charge totale horizontale induite par l’utilisateur représente 10% de la charge totale verticale induite par l’utilisateur selon A.2.2. et s’applique au même niveau, conjointement avec la charge verticale :

\[F_{tot,h} = 0,1 \times F_{tot,v} \]

Remarque :

Le cahier des charges précise que l’étude du basculement du lit sera réalisé pour un enfant de 3 ans maximum.
DOCUMENT RESSOURCES DR2 : FICHE TECHNIQUE DU HÊTRE

Origines / Description

Origines :
Europe occidentale : du 60° parallèle Nord jusqu’à la méditerranée.

Description aubier : non distinct
Couleur bois parfait : blanc grisâtre à rosé clair
Fil bois parfait : droit
Grain bois parfait : très fin
Particularité duramen : parfois plages rougeâtres au cœur

Mise en œuvre

- Sciage : assez facile
- Usinage : assez facile
- Clouage : assez facile (avant-trois conseillés)
- Collage : facile (fort serrage nécessaire)
- Finition : facile, prend bien la teinte
- Placage : déroulage et tramçage
- Séchage : assez difficile (tendance au gauchissement)

Utilisation

- Agencement, baguettes et moulures, contre-plaqués, emballage-caissière, jouets, menuiserie intérieure, meubles, parquets, tournage.

Caractéristiques physiques et mécaniques

<table>
<thead>
<tr>
<th></th>
<th>Anhydre</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mini</td>
<td>maxi</td>
<td></td>
</tr>
<tr>
<td>Masse volumique en kg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>à 12 % d'humidité</td>
<td>640</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>Retrait volumique en % pour 1 % de variation d'humidité</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial</td>
<td>0,19</td>
<td>0,22</td>
<td></td>
</tr>
<tr>
<td>Tangentiel</td>
<td>0,38</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td>Résistance à la rupture en flexion (\sigma_{LR}) à 12 % d'humidité (en MPa)</td>
<td>mini</td>
<td>90</td>
<td>max</td>
</tr>
<tr>
<td>Résistance à la rupture en traction axiale (\sigma_R) à 12 % d'humidité (en MPa)</td>
<td>mini</td>
<td>100</td>
<td>max</td>
</tr>
<tr>
<td>Résistance à la rupture en compression axiale (\sigma_{CR}) à 12 % d'humidité (en MPa)</td>
<td>mini</td>
<td>52</td>
<td>max</td>
</tr>
<tr>
<td>Résistance à la rupture cisaillement longitudinal</td>
<td>mini</td>
<td>7,7</td>
<td>max</td>
</tr>
<tr>
<td>(\sigma_R) 12 % d'humidité (en MPa)</td>
<td>mini</td>
<td>12300</td>
<td>max</td>
</tr>
<tr>
<td>Module d’élasticité en flexion à 12 % d'humidité (en MPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durabilité champignon :</td>
<td>non durable</td>
<td>sensible</td>
<td>Impregnabilité :</td>
</tr>
<tr>
<td>Durabilité termites :</td>
<td>non durable</td>
<td>sensible</td>
<td>Imprénable :</td>
</tr>
<tr>
<td>Durabilité vrille/lyctus :</td>
<td>non durable</td>
<td>sensible</td>
<td>Imprénable :</td>
</tr>
</tbody>
</table>

Remarque

Caractéristiques mécaniques :
Les caractéristiques mécaniques du hêtre sont définies par leurs valeurs mini et maxi.
Le choix entre la valeur mini ou maxi est laissé à l’initiative du candidat, et ce, en fonction de la question traitée.
Ce choix doit être justifié par une utilisation en toute sécurité du lit par l’enfant.

Contrainte admissible :
La contrainte admissible du hêtre est :

\[
\sigma = \frac{\sigma_R}{2,75}
\]

\(\sigma_R \) est la contrainte de rupture
2,75 : est le coefficient de Sécurité

Humidité du bois :
Le lit est un produit d’intérieur chauffé. L’humidité du bois constituant ce lit est inférieure ou égale à 12 %.

Observations particulières

*Le cœur n’est pas imprénageable
Peut être utilisé en remplacement du merisier, de l’acajou, du noyer (avec teinte)*
Figure 1-a : Déformation d'une latte

- F_C: contre flèche d'une latte
- L_0: longueur de la corde d'une latte non chargée.
- L': longueur maximum (A'B) d'une latte déformée.
- R: rayon d'une latte non déformée.

Figure 1-b : Chaîne de côtes

Figure 2 : Stabilité du lit sans tiroir

Hauteur du sommier fixe, égale à 194.9 mm

CA_PLP EXTERNE GIB Epreuve STI Session 2009
LIT D’ENFANT
DOSSIER RESSOURCES DR3 : COTATION - STABILITÉ
Figure 1 : Stabilité du lit avec tiroir

Hauteur sol/face supérieure du sommier fixe et égale à 194,9 mm

Hauteur sol/face supérieure du matelas fixe et égale à 287 mm

\(P_{1,1} \) : poids du lit
\(P_{1,2} \) : poids du matelas
\(P_{2,1} \) : poids du tiroir vide
\(P_{2,2} \) : poids des affaires dans le tiroir
\(P_C \) : poids de l’enfant
\(F_D \) : Force horizontale
\(G_1 \) : centre de gravité lit
\(G_2 \) : centre de gravité tiroir

Figure 2

Figure 3 :
Modèle d’étude statique

CA_PLP EXTERNE GIB
Epreuve STI Session 2009

LIT D’ENFANT

DOSSIER RESSOURCES DR4 : STABILITE DU LIT AVEC TIROIR
I – Formules de vérification de la résistance mécanique des éléments en bois.

Pièces soumises à la flexion – traction axiale

| Contraintraire normale: | \(
\frac{\sigma}{\sigma_M} \leq \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pour (\lambda \leq 0,75)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (0,75 < \lambda \leq 3)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (3 < \lambda \leq 12)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
</tbody>
</table>

Pièces soumises à la flexion – compression axiale

| Contraintraire normale: | \(
\frac{\sigma}{\sigma_M} \leq \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pour (\lambda \leq 0,75)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (0,75 < \lambda \leq 3)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (3 < \lambda \leq 12)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
</tbody>
</table>

Pièces soumises à la traction transversale

| Contraintraire normale: | \(
\frac{\sigma}{\sigma_M} \leq \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pour (\lambda \leq 0,75)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (0,75 < \lambda \leq 3)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (3 < \lambda \leq 12)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
</tbody>
</table>

Pièces soumises à la compression transversale

| Contraintraire normale: | \(
\frac{\sigma}{\sigma_M} \leq \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pour (\lambda \leq 0,75)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (0,75 < \lambda \leq 3)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (3 < \lambda \leq 12)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
</tbody>
</table>

Cisaillement longitudinal

| Contraintraire normale: | \(
\frac{\tau}{\tau_M} \leq \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0}
\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pour (\lambda \leq 0,75)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (0,75 < \lambda \leq 3)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
<tr>
<td>pour (3 < \lambda \leq 12)</td>
<td>(K = \frac{N}{A \cdot C_0} \leq \frac{N}{A \cdot C_0})</td>
</tr>
</tbody>
</table>

Longueurs de flambement \(L_d\)

<table>
<thead>
<tr>
<th>Extémité libre, extrémité encastrée</th>
<th>2 extrémités articulées</th>
<th>Extrémité articulée, extrémité encastrée</th>
<th>2 extrémités encastrées</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_d = 2 L_0)</td>
<td>(L_d = L_0)</td>
<td>(L_d = 0,8 L_0)</td>
<td>(L_d = 0,65 L_0)</td>
</tr>
</tbody>
</table>

II – Modèle d'étude des balustres. .

Figure 1

- Liaison (13/2) : liaison encastrement de centre A.
- Liaison (12/2) : liaison encastrement de centre C.
- Longueur balustre : \(L = 570\) mm
- Diamètre des balustres \(d = 15\) mm

III – Modèle d'étude de Long pan FH 12.

III.1. Vérifications aux contraintes normales et tangentielles.

Figure 2

- Liaison (17/13) : Appui glissant [ou liaison sphere plan de centre N].
- Liaison (18/13) : Articulation de centre P [ou liaison pivot d’axe (P, Z)].
- Longueur Long pan : \(L = 1191\) mm

Figure 3

Hypothèse :

La contrainte de traction transverse \(\sigma_t\) est supposée uniformément répartie et la concentration de contrainte au voisinage du parçage n'est pas pris en compte dans les calculs.
1- Coulisse, charge 40 kg

Coulisses à galets, montage sous tiroir, sortie simple.
Matériaux : acier Charge maxi : 40 kg.

<table>
<thead>
<tr>
<th>Longueur L₀</th>
<th>Réf</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>COU2403008C</td>
</tr>
<tr>
<td>350</td>
<td>COU2403508C</td>
</tr>
<tr>
<td>400</td>
<td>COU2404008C</td>
</tr>
<tr>
<td>450</td>
<td>COU2404508C</td>
</tr>
<tr>
<td>500</td>
<td>COU2405008C</td>
</tr>
<tr>
<td>550</td>
<td>COU2405508C</td>
</tr>
<tr>
<td>600</td>
<td>COU2406008C</td>
</tr>
<tr>
<td>650</td>
<td>COU2406508C</td>
</tr>
<tr>
<td>700</td>
<td>COU2407008C</td>
</tr>
<tr>
<td>750</td>
<td>COU2407508C</td>
</tr>
</tbody>
</table>

Remarque :
- La charge de 40 kg est la charge maxi que peuvent supporter les deux coulisses du tiroir.
- La course des coulisses est égale à 70 % de la longueur L₀ de chaque coulisse du tableau ci-dessus.

2- Coulisse, lourde charge 100 kg :

Coulisses à galets, montage sous tiroir, sortie simple.
Matériau : acier Charge maxi : 100 kg.

<table>
<thead>
<tr>
<th>Longueur L₀</th>
<th>Réf</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>COU114400</td>
</tr>
<tr>
<td>450</td>
<td>COU114450</td>
</tr>
<tr>
<td>500</td>
<td>COU114500</td>
</tr>
<tr>
<td>550</td>
<td>COU114550</td>
</tr>
<tr>
<td>600</td>
<td>COU114600</td>
</tr>
<tr>
<td>650</td>
<td>COU114650</td>
</tr>
<tr>
<td>700</td>
<td>COU114700</td>
</tr>
<tr>
<td>800</td>
<td>COU114800</td>
</tr>
<tr>
<td>900</td>
<td>COU114900</td>
</tr>
<tr>
<td>1000</td>
<td>COU114100</td>
</tr>
</tbody>
</table>

Remarque :
- La charge de 100 kg est la charge maxi que peuvent supporter les deux coulisses du tiroir.
- La course des coulisses est égale à 70 % de la longueur L₀ de chaque coulisse du tableau ci-dessus.